×

Parametrization and reliable extraction of proper compensators. (English) Zbl 1265.93122

Summary: The polynomial matrix equation \(X_lD_r\) \(+\) \(Y_lN_r\) \(=\) \(D_k\) is solved for those \(X_l\) and \(Y_l\) that give proper transfer functions \(X_l^{-1}Y_l\) characterizing a subclass of compensators, contained in the class whose arbitrary element can be cascaded to a plant with the given strictly proper transfer function \(N_rD_r^{-1}\) such that wrapping the negative unity feedback round the cascade gives a system whose poles are specified by \(D_k\). The subclass is navigated and extracted through a conventional parametrization whose denominators are affine to row echelon form and the centre is in a compensator whose numerator has minimum column degrees. Applications include stabilization of linear multivariable systems.

MSC:

93C05 Linear systems in control theory
93D21 Adaptive or robust stabilization

References:

[1] Callier F. M.: Proper feedback compensators for a strictly proper plant by solving polynomial equations. Proc. MMAR 2000. Miedzyzdroje 2000, pp. 55-59
[2] Callier F. M.: Polynomial equations giving a proper feedback compensator for a strictly proper plant. Proc. 1st IFAC Symposium on System Structure and Control, Prague 2001
[3] Callier F. M., Desoer C. A.: Multivariable Feedback Systems. Springer, New York 1982 · Zbl 0248.93017
[4] Forney G. D.: Minimal bases of rational vector spaces, with applications to multivariable linear systems. SIAM J. Control 13 (1975), 493-520 · Zbl 0269.93011 · doi:10.1137/0313029
[5] Golub G. H., Loan C. F. Van: Matrix Computations. North Oxford Academic, Oxford 1989 · Zbl 0733.65016
[6] Kailath T.: Linear Systems. Prentice Hall, Englewood Cliffs, N. J. 1980 · Zbl 0870.93013 · doi:10.1080/00207179608921730
[7] Kučera V., Zagalak P.: Proper solutions of polynomial equations. Proc. IFAC World Congress, Pergamon, Oxford 1999, pp. 357-362
[8] MacDuffee C. C.: The Theory of Matrices. Springer, Berlin 1933 · Zbl 0007.19507
[9] Popov V. M.: Some properties of the control systems with irreducible matrix transfer functions. (Lecture Notes in Mathematics 144.) Springer, Berlin 1969, pp. 169-180 · doi:10.1007/BFb0059934
[10] Rosenbrock H. H.: State-space and Multivariable Theory. Nelson, London 1970 · Zbl 0246.93010
[11] Rosenbrock H. H., Hayton G. E.: The general problem of pole assignment. Internat. J. Control 27 (1978), 837-852 · Zbl 0403.93017 · doi:10.1080/00207177808922416
[12] Dooren P. M. Van: The generalized eigenstructure problem in linear system theory. IEEE Trans. Automat. Control AC-26 (1981), 111-129 · Zbl 0462.93013 · doi:10.1109/TAC.1981.1102559
[13] Vidyasagar M.: Control System Synthesis. MIT Press, Cambridge, MA 1985 · Zbl 0655.93001
[14] Wang S. H., Davison E. J.: A minimization algorithm for the design of linear multivariable systems. IEEE Trans. Automat. Control AC-18 (1973), 220-225 · Zbl 0261.93010 · doi:10.1109/TAC.1973.1100283
[15] Wedderburn J.: Lectures on Matrices. American Mathematical Society, Providence, R.I. 1934 · Zbl 0176.30501
[16] Wolovich W. A.: Linear Multivariable Systems. Springer, New York 1974 · Zbl 0534.93026 · doi:10.1109/TAC.1984.1103491
[17] Zagalak P., Kučera V.: The general problem of pole assignment: a polynomial approach. IEEE Trans. Automat. Control AC-30 (1985), 286-289 · Zbl 0558.93036 · doi:10.1109/TAC.1985.1103920
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.