×

Relative commutator theory in semi-abelian categories. (English) Zbl 1264.18014

Let \(\mathcal A\) be a semi-abelian category, i.e., \(\mathcal A\) is pointed, exact and protomodular. If \(f:N\rightarrow A\) is a normal monomorphism then \(N\) is a normal subobject of \(A\). It is proved if \(N\) and \(M\) are normal subobjects of \(A\) then the join of \(N\) and \(M\) as a normal subobject of \(N\vee M\) coincides with their join as a subobject of \(N\cup M\). The other properties of normal subobjects of \(A\) are given. A full reflective subcategory \(\mathcal B\) of \(\mathcal A\) closed under subobjects and regular quotients is called a Birkhoff subcategory of \(\mathcal A\). A commutator defined to a relative Birkhoff subcategory \(\mathcal B\) of \(\mathcal A\) is studied. This commutator characterizes Janelidze and Kelly’s \(\mathcal B\)- central extensions. When \(\mathcal B\) is determined by the abelian objects of \(\mathcal A\) then it coincides with Huq’s commutator. If \(\mathcal A\) is a variety of \(\Omega\)-groups then it coincides with the relative commutator.

MSC:

18E25 Derived functors and satellites (MSC2010)
20F12 Commutator calculus
20J99 Connections of group theory with homological algebra and category theory
20K35 Extensions of abelian groups

References:

[1] Barr, M., Exact categories, (Exact Categories and Categories of Sheaves. Exact Categories and Categories of Sheaves, Lecture Notes in Math., vol. 236 (1971), Springer), 1-120 · Zbl 0223.18010
[2] F. Borceux, A survey of semi-abelian categories, in: Janelidze et al. [35]; F. Borceux, A survey of semi-abelian categories, in: Janelidze et al. [35]
[3] Borceux, F.; Bourn, D., Mal’cev, protomodular, homological and semi-abelian categories, (Math. Appl., vol. 566 (2004), Kluwer Acad. Publ) · Zbl 1061.18001
[4] Borceux, F.; Janelidze, G., Galois theories, (Cambridge Stud. Adv. Math., vol. 72 (2001), Cambridge Univ. Press) · Zbl 1141.12001
[5] Bourn, D., Normalization equivalence, kernel equivalence and affine categories, (Carboni, A.; Pedicchio, M. C.; Rosolini, G., Category Theory, Proceedings Como 1990. Category Theory, Proceedings Como 1990, Lecture Notes in Math., vol. 1488 (1991), Springer), 43-62 · Zbl 0756.18007
[6] Bourn, D., Mal’cev categories and fibration of pointed objects, Appl. Categ. Structures, 4, 307-327 (1996) · Zbl 0856.18004
[7] Bourn, D., \(3 \times 3\) Lemma and protomodularity, J. Algebra, 236, 778-795 (2001) · Zbl 0978.18004
[8] Bourn, D., Intrinsic centrality and related classifying properties, J. Algebra, 256, 126-145 (2002) · Zbl 1015.18003
[9] D. Bourn, Commutator theory in regular Mal’cev categories, in: Janelidze et al. [35]; D. Bourn, Commutator theory in regular Mal’cev categories, in: Janelidze et al. [35] · Zbl 1067.18002
[10] Bourn, D., Commutator theory in strongly protomodular categories, Theory Appl. Categ., 13, 2, 27-40 (2004) · Zbl 1068.18006
[11] Bourn, D.; Gran, M., Central extensions in semi-abelian categories, J. Pure Appl. Algebra, 175, 31-44 (2002) · Zbl 1023.18013
[12] Bourn, D.; Gran, M., Centrality and connectors in Maltsev categories, Algebra Universalis, 48, 309-331 (2002) · Zbl 1061.18006
[13] Bourn, D.; Gran, M., Centrality and normality in protomodular categories, Theory Appl. Categ., 9, 8, 151-165 (2002) · Zbl 1004.18004
[14] Carboni, A.; Kelly, G. M.; Pedicchio, M. C., Some remarks on Maltsev and Goursat categories, Appl. Categ. Structures, 1, 385-421 (1993) · Zbl 0799.18002
[15] Everaert, T., Relative commutator theory in varieties of \(\Omega \)-groups, J. Pure Appl. Algebra, 210, 1-10 (2007) · Zbl 1117.08007
[16] Everaert, T., Higher central extensions and Hopf formulae, J. Algebra, 324, 1771-1789 (2010) · Zbl 1225.18012
[17] Everaert, T.; Gran, M., Homology of \(n\)-fold groupoids, Theory Appl. Categ., 23, 2, 22-41 (2010) · Zbl 1229.18014
[18] T. Everaert, M. Gran, Protoadditive functors, derived torsion theories and homology, 2011 (submitted for publication).; T. Everaert, M. Gran, Protoadditive functors, derived torsion theories and homology, 2011 (submitted for publication). · Zbl 1341.18005
[19] Everaert, T.; Gran, M.; Van der Linden, T., Higher Hopf formulae for homology via Galois Theory, Adv. Math., 217, 5, 2231-2267 (2008) · Zbl 1140.18012
[20] Everaert, T.; Van der Linden, T., Baer invariants in semi-abelian categories I: general theory, Theory Appl. Categ., 12, 1, 1-33 (2004) · Zbl 1065.18011
[21] Everaert, T.; Van der Linden, T., A note on double central extensions in exact Mal’tsev categories, Cah. Topol. Géom. Differ. Catég., LI, 143-153 (2010) · Zbl 1215.18013
[22] Everaert, T.; Van der Linden, T., Galois theory and commutators, Algebra Universalis, 65, 2, 161-177 (2011) · Zbl 1218.08002
[23] Fröhlich, A., Baer-invariants of algebras, Trans. Amer. Math. Soc., 109, 221-244 (1963) · Zbl 0122.25702
[24] Furtado-Coelho, J., Homology and generalized Baer invariants, J. Algebra, 40, 596-609 (1976) · Zbl 0372.20037
[25] Gran, M.; Van der Linden, T., On the second cohomology group in semi-abelian categories, J. Pure Appl. Algebra, 212, 636-651 (2008) · Zbl 1136.18003
[26] Higgins, P. J., Groups with multiple operators, Proc. Lond. Math. Soc. (3), 6, 3, 366-416 (1956) · Zbl 0073.01704
[27] Huq, S. A., Commutator, nilpotency and solvability in categories, Quart. J. Math. Oxford, 19, 2, 363-389 (1968) · Zbl 0165.03301
[28] Janelidze, G., Pure Galois theory in categories, J. Algebra, 132, 2, 270-286 (1990) · Zbl 0702.18006
[29] Janelidze, G., What is a double central extension? (The question was asked by Ronald Brown), Cah. Topol. Géom. Differ. Catég., XXXII, 3, 191-201 (1991) · Zbl 0762.18003
[30] Janelidze, G., Higher dimensional central extensions: a categorical approach to homology theory of groups, (Lecture at the International Category Theory Meeting CT95 (1995), Halifax)
[31] Janelidze, G., Galois groups, abstract commutators and Hopf formula, Appl. Categ. Structures, 16, 653-668 (2008) · Zbl 1226.18003
[32] Janelidze, G.; Kelly, G. M., Galois theory and a general notion of central extension, J. Pure Appl. Algebra, 97, 2, 135-161 (1994) · Zbl 0813.18001
[33] Janelidze, G.; Kelly, G. M., The reflectiveness of covering morphisms in algebra and geometry, Theory Appl. Categ., 3, 6, 132-159 (1997) · Zbl 0866.18004
[34] Janelidze, G.; Márki, L.; Tholen, W., Semi-abelian categories, J. Pure Appl. Algebra, 168, 2-3, 367-386 (2002) · Zbl 0993.18008
[35] Galois theory, Hopf algebras, and semiabelian categories, (Janelidze, G.; Pareigis, B.; Tholen, W., Fields Inst. Commun., vol. 43 (2004), Amer. Math. Soc) · Zbl 1051.18002
[36] Lavendhomme, R.; Roisin, J. R., Cohomologie non abélienne de structures algébriques, J. Algebra, 67, 385-414 (1980) · Zbl 0503.18013
[37] Lue, A. S.-T., Baer-invariants and extensions relative to a variety, Math. Proc. Cambridge Philos. Soc., 63, 569-578 (1967) · Zbl 0154.27501
[38] Mantovani, S.; Metere, G., Normalities and commutators, J. Algebra, 324, 9, 2568-2588 (2010) · Zbl 1218.18001
[39] Pedicchio, M. C., A categorical approach to commutator theory, J. Algebra, 177, 647-657 (1995) · Zbl 0843.08004
[40] Rodelo, D., Moore categories, Theory Appl. Categ., 12, 6, 237-247 (2004) · Zbl 1058.18005
[41] Rodelo, D.; Van der Linden, T., The third cohomology group classifies double central extensions, Theory Appl. Categ., 23, 8, 150-169 (2010) · Zbl 1328.18019
[42] Rossi, V., Admissible Galois structures and coverings in regular Mal’cev categories, Appl. Categ. Structures, 14, 4, 291-311 (2006) · Zbl 1112.18001
[43] Smith, J. D.H., Mal’cev varieties, (Lecture Notes in Math., vol. 554 (1976), Springer) · Zbl 0344.08002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.