×

Guaranteed cost PID control for uncertain discrete-time stochastic systems with additive gain perturbations. (English) Zbl 1263.93209

Summary: This paper investigates a novel design method for robust nonfragile proportional-integral-derivative (PID) control that is based on the guaranteed cost control (GCC) problem for a class of uncertain discrete-time stochastic systems with additive gain perturbations. On the basis of linear matrix inequality (LMI), a class of fixed PID controller parameters is obtained, and some sufficient conditions for the existence of the GCC are derived. Although the additive gain perturbations are included in the feedback systems, both the stability of closed-loop systems and adequate cost bound are attained. As a sequel, decentralized GCC PID for a class of discrete-time uncertain large-scale stochastic systems is also considered. Finally, the numerical results demonstrate the efficiency of the proposed controller synthesis.

MSC:

93E03 Stochastic systems in control theory (general)
93C55 Discrete-time control/observation systems
93C41 Control/observation systems with incomplete information
93C73 Perturbations in control/observation systems
93E12 Identification in stochastic control theory
Full Text: DOI

References:

[1] Park, Robust non-fragile decentralized controller design for uncertain large-scale interconnected systems with time-delays, J. Dyn. Syst. Meas. Control-Trans. ASME 124 (2) pp 332– (2002) · doi:10.1115/1.1470176
[2] Petersen, Optimal guaranteed cost control and filtering for uncertain linear systems, IEEE Trans. Autom. Control 39 (9) pp 1971– (1994) · Zbl 0817.93025 · doi:10.1109/9.317138
[3] Petersen, Optimal guaranteed cost control of discrete-time uncertain linear systems, Int. J. Robust Nonlinear Control 8 (5) pp 649– (1998) · Zbl 0911.93048 · doi:10.1002/(SICI)1099-1239(19980715)8:8<649::AID-RNC334>3.0.CO;2-6
[4] Moheimani, Guaranteed cost control of uncertain systems with time-multiplied quadratic cost function: an approach based on linear matrix inequalities, Automatica 34 (5) pp 651– (1998) · Zbl 0944.93028 · doi:10.1016/S0005-1098(98)00016-8
[5] Moheimani, Optimal quadratic guaranteed cost control of a class of uncertain time-delay systems, Proc. IEE-Control Theory Appl. 144 (2) pp 183– (1997) · Zbl 0873.49024 · doi:10.1049/ip-cta:19970844
[6] Park, Guaranteed cost control of uncertain nonlinear neutral systems via memory state feedback, Chaos Solitons Fractals 24 (1) pp 183– (2005) · Zbl 1072.93014 · doi:10.1016/j.chaos.2004.09.005
[7] Park, Robust non-fragile guaranteed cost control of uncertain large-scale systems with time-delays in subsystem interconnections, Int. J. Syst. Sci. 35 (4) pp 233– (2004) · Zbl 1067.93054 · doi:10.1080/00207720410001714121
[8] Park, Decentralized dynamic output feedback controller design for guaranteed cost stabilization of large-scale discrete-delay systems, Appl. Math. Comput. 156 (2) pp 307– (2004) · Zbl 1108.93007 · doi:10.1016/j.amc.2003.07.021
[9] Takahashi, Multiobjective H2/H guaranteed cost PID design, Control Syst. Mag. 17 (5) pp 37– (1997) · doi:10.1109/37.621468
[10] Rosinová, Robust PID decentralized controller design using LMI, Int. J. Comp. Comm. Control 2 (2) pp 195– (2007) · doi:10.15837/ijccc.2007.2.2352
[11] Jian-Ming , X. U. L. Yu An LMI approach to guaranteed cost PI control of linear uncertain systems 2165 2170
[12] Mukaidani , H. T. Umeda Y. Tanaka T. Tsuji Guaranteed cost PI control for uncertain discrete-time systems with additive gain 2319 2324
[13] D’Emilia, Use of neural networks for quick and accurate auto-tuning of PID controller, Robot Comput.-Integr. Manuf. Arch. 23 (2) pp 170– (2007) · doi:10.1016/j.rcim.2006.04.001
[14] Shen, Fuzzy neural networks for tuning PID controller for plants with underdamped responses, IEEE Trans. Fuzzy Syst. 9 (2) pp 333– (2001) · doi:10.1109/91.919254
[15] Mukaidani , H. Y. Ishii Y. Tanaka N. Bu T. Tsuji LMI based neurocontroller for guaranteed cost control of discrete-time uncertain system 809 814
[16] Ishii, LMI based neurocontorller for output-feedback guaranteed cost control of discrete-time uncertain system, Proc. IEEE Int. Midwest Symp. Circuits Syst. III pp 141– (2004)
[17] Mukaidani, LMI based neurocontroller for state-feedback guaranteed cost control of discrete-time uncertain system, IEICE Trans. Inf. Syst. E88-D (8) pp 1903– (2005) · doi:10.1093/ietisy/e88-d.8.1903
[18] Mukaidani , H. Y. Ishii Y. Tanaka N. Bu T. Tsuji Decentralized guaranteed cost control for discrete-time uncertain large-scale systems using neural networks
[19] Mukaidani , H. M. Kimoto T. Yamamoto Decentralized guaranteed cost control for discrete-time uncertain large-scale systems using fuzzy control 3099 3105
[20] Ho, Robust non-fragile PID controller design, Int. J. Robust Nonlinear Control 11 (7) pp 681– (2001) · Zbl 0993.93009 · doi:10.1002/rnc.618
[21] Jones, Design of adaptive digital set-point tracking PID controllers incorporating recursive step-response matrix identifiers for multivariable plants, IEEE Trans. Autom. Control 32 (5) pp 459– (1987) · Zbl 0612.93040 · doi:10.1109/TAC.1987.1104633
[22] Zhang, Infinite horizon stochastic H2/H control for discrete-time systems with state and disturbance dependence noise, Automatica 44 (9) pp 2306– (2008) · Zbl 1153.93030 · doi:10.1016/j.automatica.2008.01.028
[23] Li, Detectability and observability of discrete-time stochastic systems and their applications, Automatica 45 (5) pp 1340– (2009) · Zbl 1162.93321 · doi:10.1016/j.automatica.2009.01.014
[24] Huang, Infinite horizon linear quadratic optimal control for discrete-time stochastic systems, Asian J. Control 10 (5) pp 608– (2008) · doi:10.1002/asjc.61
[25] Wang, Robsut decentralized control for multimachine power systems, IEEE Trans. Circuits Syst. I 45 (3) pp 271– (1998) · doi:10.1109/81.662700
[26] Zhou, Essentials of Robust Control (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.