×

Rate of convergence to stationarity of the system \( M / M / N / N + R \). (English) Zbl 1263.60081

The paper under review considers the \(M/M/N/N+R\) queueing system, in which the rate of arrival is \(\lambda\) and the reciprocal of the mean service time in each server is \(\mu\). Let \(\lambda_j=\lambda\) and \(\mu_j=\mu\min\{j,N\}\), and let \(p_j(t)=\operatorname{P}\{X(t)=j\}\), where \(X(t)\) is a birth-and-death process with the birth and death rates \(\lambda_j\) and \(\mu_j\), respectively, \(0<j\leq N+R\). Denote \(a=\frac{\lambda}{\mu}\). Then, for \(0\leq j\leq N\), the stationary probabilities are \[ \pi_j=c\frac{a^j}{j!}, \] and, for \(N<j\leq N+R\), they are \[ \pi_j=c\frac{a^j}{N!N^{j-N}}, \] where \(c\) is the normalisation constant.
The paper studies bounds for the rate of convergence, as \(t\to\infty\), of the probabilities \(p_j(t)\) to the stationary probabilities \(\pi_j\), and study the behaviour of \(p_j(t)\) as a function of \(R\), \(N\) and arrival rate \(\lambda\), allowing the parameter \(\lambda\) to be dependent on \(N\).

MSC:

60K25 Queueing theory (aspects of probability theory)
90B22 Queues and service in operations research
Full Text: DOI

References:

[1] Chen MF (1996) Estimation of spectral gap for Markov chains. Acta Math Sin New Ser 12:337–360 · Zbl 0867.60038 · doi:10.1007/BF02106789
[2] Chen MF (1998) Estimate of exponential convergence rate in total variation by spectral gap. Acta Math Sin New Ser 14:9–16 · Zbl 0907.60067 · doi:10.1007/BF02563878
[3] Chihara TS (1978) An introduction to orthogonal polynomials. Gordon and Breach, New York · Zbl 0389.33008
[4] Gamarnik G, Goldberg D (2010) On the rate of convergence to stationarity of the M/M/N queue in the Halfin–Whitt regime. Preprint arXiv:1003.2004 · Zbl 1287.60111
[5] Granovsky BL, Zeifman AI (1997) The decay function of nonhomogeneous birth–death processes, with application to mean-field models. Stoch Process Appl 72:105–120 · Zbl 0942.60075 · doi:10.1016/S0304-4149(97)00085-9
[6] Ismail MEH, Muldoon ME (1991) A discrete approach to monotonicity of zeros of orthogonal polynomials. Trans Am Math Soc 323:65–78 · Zbl 0718.33004 · doi:10.1090/S0002-9947-1991-1014251-8
[7] Jagerman DL (1974) Some properties of the Erlang loss function. Bell Syst Tech J 53:525–551 · Zbl 0276.60092 · doi:10.1002/j.1538-7305.1974.tb02756.x
[8] Karlin S, McGregor JL (1958) Many server queueing processes with Poisson input and exponential service times. Pac J Math 8:87–118 · Zbl 0091.13803 · doi:10.2140/pjm.1958.8.87
[9] Karlin S, McGregor JL (1965) Ehrenfest urn models. J Appl Probab 2:352–376 · Zbl 0143.40501 · doi:10.2307/3212199
[10] Keilson J, Ramaswamy R (1987) The relaxation time for truncated birth–death processes. Probab Eng Inf Sci 1:367–381 · Zbl 1134.60332 · doi:10.1017/S0269964800000462
[11] Kijima M (1990) On the largest negative eigenvalue of the infinitesimal generator associated with M/M/n/n queues. Oper Res Lett 9:59–64 · Zbl 0693.60082 · doi:10.1016/0167-6377(90)90041-3
[12] Kijima M (1992) Evaluation of the decay parameter for some specialized birth–death processes. J Appl Probab 29:781–791 · Zbl 0764.60119 · doi:10.2307/3214712
[13] Kijima M (1997) Markov processes for stochastic modelling. Chapman &amp; Hall, London
[14] Takács L (1962) Introduction to the theory of queues. Oxford University Press, New York · Zbl 0106.33502
[15] van Doorn EA (1981) Stochastic monotonicity and queueing applications of birth–death processes. Lecture notes in statistics, vol 4. Springer, New York
[16] van Doorn EA (1985) Conditions for exponential ergodicity and bounds for the decay parameter of a birth–death process. Adv Appl Probab 17:514–530 · Zbl 0597.60080 · doi:10.2307/1427118
[17] van Doorn EA, Zeifman AI (2009) On the speed of convergence to stationarity of the Erlang loss system. Queueing Syst 63:241–252 · Zbl 1209.90122 · doi:10.1007/s11134-009-9134-9
[18] van Doorn EA, Zeifman AI, Panfilova TL (2010) Bounds and asymptotics for the rate of convergence of birth–death processes. Theory Probab Appl 54:97–113 · Zbl 1204.60083 · doi:10.1137/S0040585X97984097
[19] Zeifman AI (1995) Upper and lower bounds on the rate of convergence for non-homogeneous birth and death processes. Stoch Process Appl 59:157–173 · Zbl 0846.60084 · doi:10.1016/0304-4149(95)00028-6
[20] Zeifman AI, Bening VE, Sokolov IA (2008) Markov chains and models in continuous time. Elex-KM, Moscow (in Russian)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.