×

Topological complexity of \(H\)-spaces. (English) Zbl 1263.55002

The notion of topological complexity \(TC(X)\), introduced in [M. Farber, Discrete Comput. Geom. 29, No. 2, 211–221 (2003; Zbl 1038.68130)], is motivated by the study of motion planning algorithms in robotics. Higher versions of the invariant \(TC(X)\) were defined by Y. Rudyak in [Topology Appl. 157, No. 5, 916–920 (2010); erratum ibid. 157, No. 6, 1118 (2010; Zbl 1187.55001)] and are denoted \(TC_n(X)\) with \(TC_2(X)\) being equal to \(TC(X)\). The authors prove that for a connected CW \(H\)-space one has \(TC_{n+1}(X) = cat(X^n)\) and in particular \(TC(X) = cat(X).\) This result was previously known in the special case when \(X\) is a topological group. The authors also give an inequality applicable when a space \(Y\) acts on another space \(X\).

MSC:

55M30 Lyusternik-Shnirel’man category of a space, topological complexity à la Farber, topological robotics (topological aspects)
55S40 Sectioning fiber spaces and bundles in algebraic topology
57T99 Homology and homotopy of topological groups and related structures
70Q05 Control of mechanical systems

References:

[1] I. Basabe, J. González, Y. Rudyak, and D. Tamaki, Higher topological complexity and homotopy dimension of configuration spaces on spheres, preprint, arXiv:1009.1851v5[math.AT], 2010.
[2] Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. · Zbl 1032.55001
[3] M. Cristina Costoya-Ramos, Catégorie de Lusternik-Schnirelmann et genre des \?\(_{0}\)-espaces, Proc. Amer. Math. Soc. 131 (2003), no. 2, 637 – 645 (French, with French summary). · Zbl 1010.55003
[4] Michael Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211 – 221. · Zbl 1038.68130 · doi:10.1007/s00454-002-0760-9
[5] Michael Farber, Instabilities of robot motion, Topology Appl. 140 (2004), no. 2-3, 245 – 266. · Zbl 1106.68107 · doi:10.1016/j.topol.2003.07.011
[6] Michael Farber, Topology of robot motion planning, Morse theoretic methods in nonlinear analysis and in symplectic topology, NATO Sci. Ser. II Math. Phys. Chem., vol. 217, Springer, Dordrecht, 2006, pp. 185 – 230. · Zbl 1089.68131 · doi:10.1007/1-4020-4266-3_05
[7] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. · Zbl 0961.55002
[8] Lucía Fernández-Suárez, Antonio Gómez-Tato, Jeffrey Strom, and Daniel Tanré, The Lusternik-Schnirelmann category of \?\?(3), Proc. Amer. Math. Soc. 132 (2004), no. 2, 587 – 595. · Zbl 1038.55004
[9] Pierre Ghienne, The Lusternik-Schnirelmann category of spaces in the Mislin genus of \?\?(3), Lusternik-Schnirelmann category and related topics (South Hadley, MA, 2001) Contemp. Math., vol. 316, Amer. Math. Soc., Providence, RI, 2002, pp. 121 – 126. · Zbl 1029.55005 · doi:10.1090/conm/316/05500
[11] I. M. James, Multiplication on spheres. II, Trans. Amer. Math. Soc. 84 (1957), 545 – 558. · Zbl 0085.17202
[12] I. M. James, On \?-spaces and their homotopy groups, Quart. J. Math. Oxford Ser. (2) 11 (1960), 161 – 179. · Zbl 0097.16102 · doi:10.1093/qmath/11.1.161
[13] Yuli B. Rudyak, On higher analogs of topological complexity, Topology Appl. 157 (2010), no. 5, 916 – 920. · Zbl 1187.55001 · doi:10.1016/j.topol.2009.12.007
[14] Yuli B. Rudyak, Erratum to ”On higher analogs of topological complexity” [Topology Appl. 157 (5) (2010) 916 – 920] [MR2593704], Topology Appl. 157 (2010), no. 6, 1118. · Zbl 1194.55009 · doi:10.1016/j.topol.2010.02.004
[15] Wilhelm Singhof, On the Lusternik-Schnirelmann category of Lie groups, Math. Z. 145 (1975), no. 2, 111 – 116. · Zbl 0315.55012 · doi:10.1007/BF01214775
[16] Masahiro Sugawara, On a condition that a space is an \?-space, Math. J. Okayama Univ. 6 (1957), 109 – 129. · Zbl 0077.16702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.