×

Inexact restoration for Euler discretization of box-constrained optimal control problems. (English) Zbl 1263.49029

Summary: The inexact restoration method for Euler discretization of state and control constrained optimal control problems is studied. Convergence of the discretized (finite-dimensional optimization) problem to an approximate solution using the inexact restoration method and convergence of the approximate solution to a continuous-time solution of the original problem are established. It is proved that a sufficient condition for convergence of the inexact restoration method is guaranteed to hold for the constrained optimal control problem. Numerical experiments employing the modelling language AMPL and optimization software Ipopt are carried out to illustrate the robustness of the inexact restoration method by means of two computationally challenging optimal control problems, one involving a container crane and the other a free-flying robot. The experiments interestingly demonstrate that one might be better-off using Ipopt as part of the inexact restoration method (in its subproblems) rather than using Ipopt directly on its own.

MSC:

49M25 Discrete approximations in optimal control

Software:

Ipopt; AMPL

References:

[1] Kaya, C.Y., Mart��nez, J.M.: Euler discretization for inexact restoration and optimal control. J. Optim. Theory Appl. 134, 191–206 (2007) · Zbl 1135.49019 · doi:10.1007/s10957-007-9217-x
[2] Kaya, C.Y.: Inexact restoration for Runge-Kutta discretization of optimal control problems. SIAM J. Numer. Anal. 48(4), 1492–1517 (2010) · Zbl 1230.49029 · doi:10.1137/090766668
[3] Hager, W.W.: Runge-Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000) · Zbl 0991.49020 · doi:10.1007/s002110000178
[4] Dontchev, A.L., Hager, W.W., Malanowski, K.: Error bound for Euler approximation of a state and control constrained optimal control problem. Numer. Funct. Anal. Optim. 21(6), 653–682 (2000) · Zbl 0969.49013 · doi:10.1080/01630560008816979
[5] Dontchev, A.L., Hager, W.W.: The Euler approximation in state constrained optimal control problems. Math. Comput. 70, 173–203 (2000) · Zbl 0987.49017 · doi:10.1090/S0025-5718-00-01184-4
[6] Malanowski, K., Büskens, C., Maurer, H.: Convergence of approximations to nonlinear optimal control problems. In: Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbations V. Lecture Notes in Pure and Applied Mathematics, vol. 195, pp. 253–284 (1997) · Zbl 0883.49025
[7] Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation: Applications vol. II. Springer, Berlin (2006)
[8] Martínez, J.M., Pilotta, E.A.: Inexact restoration algorithm for constrained optimization. J. Optim. Theory Appl. 104(1), 135–163 (2000) · Zbl 0969.90094 · doi:10.1023/A:1004632923654
[9] Martínez, J.M.: Inexact restoration method with Lagrangian tangent decrease and new merit function for nonlinear. J. Optim. Theory Appl. 111, 39–58 (2001) · Zbl 1052.90089 · doi:10.1023/A:1017567113614
[10] Birgin, E.G., Martínez, J.M.: Local convergence of an Inexact-Restoration method and numerical experiments. J. Optim. Theory Appl. 127(2), 229–247 (2005) · Zbl 1116.90094 · doi:10.1007/s10957-005-6537-6
[11] Kaya, C.Y., Martínez, J.M.: Euler discretization for inexact restoration and optimal control. Technical report, (2006) http://www.ime.unicamp.br/\(\sim\)martinez/ . See also: http://people.unisa.edu.au/yalcin.kaya · Zbl 1135.49019
[12] Büskens, C.: Optimierungsmethoden and sensitivitätsanalyse für optimale steuerprozesse mit steuer- und Zustands-Beschränkungen. Ph.D. Thesis, Universität Münster (1998) · Zbl 0907.49010
[13] Luus, R.: Iterative Dynamic Programming. Chapman and Hall/CRC, London (2000) · Zbl 1070.49001
[14] Teo, K.L., Goh, C.J., Wong, K.H.: A Unified Computational Approach to Optimal Control Problems. Longman, New York (1991) · Zbl 0747.49005
[15] Sirisena, H.R., Chou, F.S.: Convergence of the control parameterization Ritz method for nonlinear optimal control problems. J. Optim. Theory Appl. 29(3), 369–382 (1979) · Zbl 0387.49032 · doi:10.1007/BF00933141
[16] Kaya, C.Y., Lucas, S.K., Simakov, S.T.: Computations for bang–bang constrained optimal control using a mathematical programming formulation. Optim. Control Appl. Methods 25(6), 295–308 (2004) · Zbl 1073.49019 · doi:10.1002/oca.749
[17] Kaya, C.Y., Noakes, J.L.: Computational method for time-optimal switching control. J. Optim. Theory Appl. 117(1), 69–92 (2003) · Zbl 1029.49029 · doi:10.1023/A:1023600422807
[18] Maurer, H., Büskens, C., Kim, J.-H.R., Kaya, C.Y.: Optimization methods for the verification of second-order sufficient conditions for bang–bang controls. Optim. Control Appl. Methods 26(3), 129–156 (2005) · doi:10.1002/oca.756
[19] Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modelling Language for Mathematical Programming, 2nd edn. Brooks/Cole/Cengage Learning, Pacific Grove (2002)
[20] Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006) · Zbl 1134.90542 · doi:10.1007/s10107-004-0559-y
[21] Hartl, R.F., Sethi, S.P., Vickson, R.G.: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37, 181–218 (1995) · Zbl 0832.49013 · doi:10.1137/1037043
[22] Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Nashua (1997)
[23] Sakawa, Y., Shindo, Y.: Optimal control of container cranes. Automatica 18, 257–266 (1982) · Zbl 0488.93021 · doi:10.1016/0005-1098(82)90086-3
[24] Augustin, D., Maurer, H.: Sensitivity analysis and real-time control of a container crane under state constraints. In: Grötschel, M., Krumke, S.O., Rambau, J. (eds.) Online Optimization of Large Scale Systems, pp. 69–82. Springer, Berlin (2001) · Zbl 1007.49012
[25] Pytlak, R., Vinter, R.B.: Feasible direction algorithm for optimal control problems with state and control constraints: implementation. J. Optim. Theory Appl. 101, 623–649 (1999) · Zbl 0956.90061 · doi:10.1023/A:1021742204850
[26] Teo, K.L., Jennings, J.L.: Nonlinear optimal control problems with continuous state inequality constraints. J. Optim. Theory Appl. 63(1), 1–22 (1989) · Zbl 0663.49015 · doi:10.1007/BF00940727
[27] Alt, W., Baier, R., Gerdts, M., Lempio, F.: Approximations for bang–bang solutions of linear control problems. Optimization (2011). doi: 10.1080/02331934.2011.568619 · Zbl 1263.49028
[28] Sakawa, Y.: Trajectory planning of a free-flying robot by using the optimal control. Optim. Control Appl. Methods 20, 235–248 (1999) · doi:10.1002/(SICI)1099-1514(199909/10)20:5<235::AID-OCA658>3.0.CO;2-I
[29] Vossen, G.A., Maurer, H.: On L 1-minimization in optimal control and applications to robotics. Optim. Control Appl. Methods 27, 301–321 (2006) · doi:10.1002/oca.781
[30] Andreani, R., Castro, S.L.C., Chela, J., Friedlander, J., Santos, S.A.: An inexact-restoration method for nonlinear bilevel programming problems. Comput. Optim. Appl. 43, 307–328 (2009) · Zbl 1170.90484 · doi:10.1007/s10589-007-9147-4
[31] Francisco, J.B., Martínez, J.M., Martínez, L., Pisnitchenko, F.: Inexact restoration method for minimization problems arising in electronic structure calculations. Comput. Optim. Appl. 50, 555–590 (2011) · Zbl 1263.90090 · doi:10.1007/s10589-010-9318-6
[32] Gomes-Ruggiero, M.A., Martínez, J.M., Santos, S.A.: Spectral projected gradient method with inexact restoration for minimization with nonconvex constraints. SIAM J. Sci. Comput. 31, 1628–1652 (2009) · Zbl 1220.90123 · doi:10.1137/070707828
[33] Fischer, A., Friedlander, A.: A new line search inexact restoration approach for nonlinear programming. Comput. Optim. Appl. 46, 333–346 (2010) · Zbl 1220.90122 · doi:10.1007/s10589-009-9267-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.