×

The Drazin spectrum of tensor product of Banach algebra elements and elementary operators. (English) Zbl 1263.47007

Let \(A\) be a unital Banach algebra. The Drazin spectrum of \(a\in A\) is the set of all complex numbers such that \(a-\lambda\) is not Drazin invertible. If \(B\) is a Banach algebra, then let \(A\overline \otimes B\) denote the completion of \(A\otimes B\) with respect to a uniform crossnorm. For \(a\in A\) and \(b\in B\), the author characterizes the Drazin spectrum of \(a\otimes b\in A\overline \otimes B\). To this end, he characterizes the isolated points of the spectrum of \(a\otimes b\in A\overline \otimes B\). Further, for Banach spaces \(X, Y\) and operators \(S\in L(X)\), \(T\in L(Y)\), he characterizes the Drazin spectrum of the elementary operator \(\tau_{ST}\in L(L(Y,X))\) defined by \(\tau_{ST}(A)=SAT\).

MSC:

47A10 Spectrum, resolvent
46H05 General theory of topological algebras
47B49 Transformers, preservers (linear operators on spaces of linear operators)

References:

[1] DOI: 10.1007/BF02874946 · Zbl 1123.47018 · doi:10.1007/BF02874946
[2] DOI: 10.4064/sm148-3-4 · Zbl 1005.47012 · doi:10.4064/sm148-3-4
[3] DOI: 10.1016/j.jmaa.2009.05.036 · Zbl 1171.47002 · doi:10.1016/j.jmaa.2009.05.036
[4] DOI: 10.1016/j.jmaa.2010.04.069 · Zbl 1202.47004 · doi:10.1016/j.jmaa.2010.04.069
[5] DOI: 10.1090/S0002-9939-1966-0188786-5 · doi:10.1090/S0002-9939-1966-0188786-5
[6] DOI: 10.1090/S0002-9939-1988-0943057-6 · doi:10.1090/S0002-9939-1988-0943057-6
[7] DOI: 10.2307/2308576 · Zbl 0083.02901 · doi:10.2307/2308576
[8] DOI: 10.1016/j.jmaa.2009.06.011 · Zbl 1170.47001 · doi:10.1016/j.jmaa.2009.06.011
[9] DOI: 10.1007/s12215-010-0035-x · Zbl 1241.47016 · doi:10.1007/s12215-010-0035-x
[10] DOI: 10.1017/S0017089510000522 · Zbl 1197.47050 · doi:10.1017/S0017089510000522
[11] Eschmeier J, J. Reine Angew. Math. 390 pp 47– (1988)
[12] Harte R, Invertibility and Singularity for Bounded Linear Operators (1988)
[13] DOI: 10.1016/j.jmaa.2007.03.053 · Zbl 1131.47005 · doi:10.1016/j.jmaa.2007.03.053
[14] DOI: 10.1090/S0002-9947-1978-0472915-2 · doi:10.1090/S0002-9947-1978-0472915-2
[15] Ichinose T, Trans. Am. Math. Soc. 237 pp 223– (1978)
[16] King C, Pacific J. Math. 70 pp 383– (1977) · Zbl 0382.47001 · doi:10.2140/pjm.1977.70.383
[17] DOI: 10.1090/S0002-9939-96-03449-1 · Zbl 0864.46028 · doi:10.1090/S0002-9939-96-03449-1
[18] Kordula V, Studia Math. 119 pp 109– (1996)
[19] DOI: 10.1017/S0017089508004205 · Zbl 1136.47013 · doi:10.1017/S0017089508004205
[20] Mbekhta M, Studia Math. 119 pp 129– (1996)
[21] Pietsch A, Operator Ideals (1980)
[22] Roch S, Studia Math. 136 pp 197– (1999)
[23] DOI: 10.1017/S0017089504001776 · Zbl 1136.47014 · doi:10.1017/S0017089504001776
[24] Taylor AE, Introduction to Functional Analysis (1958)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.