×

Parameter estimation and topology identification of uncertain fractional order complex networks. (English) Zbl 1263.35218

Summary: This paper focuses on a significant issue in the research of fractional order complex network, i.e., the identification problem of unknown system parameters and network topologies in uncertain complex networks with fractional-order node dynamics. Based on the stability analysis of fractional order systems and the adaptive control method, we propose a novel and general approach to address this challenge. The theoretical results in this paper have generalized the synchronization-based identification method that has been reported in several literatures on identifying integer order complex networks. We further derive the sufficient condition that ensures successful network identification. An uncertain complex network with four fractional-order Lorenz systems is employed to verify the effectiveness of the proposed approach. The numerical results show that this approach is applicable for online monitoring of the static or changing network topology. In addition, we present a discussion to explore which factor would influence the identification process. Certain interesting conclusions from the discussion are obtained, which reveal that large coupling strengths and small fractional orders are both harmful for a successful identification.

MSC:

35R11 Fractional partial differential equations
90C35 Programming involving graphs or networks
Full Text: DOI

References:

[1] Strogatz, S. H., Exploring complex networks, Nature, 410, 268-276 (2001) · Zbl 1370.90052
[2] Wang, X. F.; Chen, G., Complex networks: small-world, scale-free and beyond, Circuits Syst Mag IEEE, 3, 6-20 (2003)
[3] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. U., Complex networks: structure and dynamics, Phys Rep, 424, 175-308 (2006) · Zbl 1371.82002
[4] Albert, R.; Barabasi, A. L., Statistical mechanics of complex networks, Rev Mod Phys, 74, 47 (2002) · Zbl 1205.82086
[5] Yang, S. J., Exploring complex networks by walking on them, Phys Rev E, 71, 016107 (2005)
[6] Wang, X. F.; Chen, G., Pinning control of scale-free dynamical networks, Physica A, 310, 521-531 (2002) · Zbl 0995.90008
[7] Cao, J.; Lu, J., Adaptive synchronization of neural networks with or without time-varying delay, Chaos, 16, 013133 (2006) · Zbl 1144.37331
[8] Yu, W. W.; Chen, G. R.; Lü, J. H., On pinning synchronization of complex dynamical networks, Automatica, 45, 429-435 (2009) · Zbl 1158.93308
[9] Chen, S. Q.; Chen, B., Defining indirect uncertainty in system-based risk management, Ecol Inf (2011)
[10] Liu, H.; Lu, J. A.; Lü, J. H.; Hill, D. J., Structure identification of uncertain general complex dynamical networks with time delay, Automatica, 45, 1799-1807 (2009) · Zbl 1185.93031
[11] Parlitz, U., Estimating model parameters from time series by autosynchronization, Phys Rev Lett, 76, 1232-1235 (1996)
[12] Konnur, R., Synchronization-based approach for estimating all model parameters of chaotic systems, Phys Rev E, 67, 027204 (2003)
[13] Huang, D., Synchronization-based estimation of all parameters of chaotic systems from time series, Phys Rev E, 69, 067201 (2004)
[14] Yu, W. W.; Chen, G. R.; Cao, J. D.; Lü, J. H.; Parlitz, U., Parameter identification of dynamical systems from time series, Phys Rev E, 75, 067201 (2007)
[15] Peng, H.; Li, L.; Yang, Y.; Sun, F., Conditions of parameter identification from time series, Phys Rev E, 83, 036202 (2011)
[16] Yu, D.; Righero, M.; Kocarev, L., Estimating topology of networks, Phys Rev Lett, 97, 188701 (2006)
[17] Zhou, J.; Lu, J., Topology identification of weighted complex dynamical networks, Physica A, 386, 481-491 (2007)
[18] Wu, X., Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay, Physica A, 387, 997-1008 (2008)
[19] Mainardi, F., Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 7, 1461-1477 (1996) · Zbl 1080.26505
[20] Zaslavsky, G. M., Chaos, fractional kinetics, and anomalous transport, Phys Rep, 371, 461-580 (2002) · Zbl 0999.82053
[21] Mainardi, F., Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models (2009), Imperial College Press: Imperial College Press London
[22] Bai, J.; Yu, Y.; Wang, S.; Song, Y., Modified projective synchronization of uncertain fractional order hyperchaotic systems, Commun Nonlinear Sci Numer Simul, 17, 1921-1928 (2012) · Zbl 1239.93085
[23] Moaddy, K.; Hashim, I.; Momani, S., Non-standard finite difference schemes for solving fractional-order Rössler chaotic and hyperchaotic systems, Comput Math Appl, 62, 1068-1074 (2011) · Zbl 1228.65119
[24] Tang, Y.; Wang, Z.; Fang, J., Pinning control of fractional-order weighted complex networks, Chaos, 19, 013112 (2009) · Zbl 1311.34018
[25] Tang, Y.; Fang, J., Synchronization of N-coupled fractional-order chaotic systems with ring connection, Commun Nonlinear Sci Numer Simul, 15, 401-412 (2010) · Zbl 1221.34103
[26] Wang, J.; Zhang, Y., Network synchronization in a population of star-coupled fractional nonlinear oscillators, Phys Lett A, 374, 1464-1468 (2010) · Zbl 1236.05188
[27] Wu, X. J.; Lu, H. T., Outer synchronization between two different fractional-order general complex dynamical networks, Chin Phys B, 19, 070511 (2010)
[28] Asheghan, M. M.; Miguez, J.; Hamidi-Beheshti, M. T.; Tavazoei, M. S., Robust outer synchronization between two complex networks with fractional order dynamics, Chaos, 21, 033121 (2011) · Zbl 1318.34003
[29] Wu, X.; Lai, D.; Lu, H., Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes, Nonlinear Dyn, 69, 667-683 (2012) · Zbl 1258.34130
[30] Podlubny, I., Fractional differential equations (1999), Academic press: Academic press New York · Zbl 0918.34010
[31] Matignon D. Stability results for fractional differential equations with applications to control processing. In: Computational engineering in systems applications multiconference, proceeeding of IMACS, IEEE-SMC, Lille, France: 1996, pp. 963-968.; Matignon D. Stability results for fractional differential equations with applications to control processing. In: Computational engineering in systems applications multiconference, proceeeding of IMACS, IEEE-SMC, Lille, France: 1996, pp. 963-968.
[32] Hu, J. B.; Han, Y.; Zhao, L. D., Synchronizing fractional chaotic systems based on Lyapunov equation, Acta Phy Sin, 57, 7522-7526 (2008) · Zbl 1199.37060
[33] Hu, J. B.; Han, Y.; Zhao, L. D., A novel stability theorem for fractional systems and its applying in synchronizing fractional chaotic system based on back-stepping approcach, Acta Phys Sin, 58, 2235-2239 (2009) · Zbl 1199.37062
[34] Qin, C. M.; Qi, N. M.; Zhu, K., State space modeling and stability theory of variable fractional order system (in Chinese), Control Decis, 26, 1757-1760 (2011)
[35] Vinagre, B.; Podlubny, I.; Hernandez, A.; Feliu, V., Some approximations of fractional order operators used in control theory and applications, Fract Calculus Appl Anal, 3, 231-248 (2000) · Zbl 1111.93302
[36] Aoun, M.; Malti, R.; Levron, F.; Oustaloup, A., Numerical simulations of fractional systems: an overview of existing methods and improvements, Nonlinear Dyn, 38, 117-131 (2004) · Zbl 1134.65300
[37] Tavazoei, M. S.; Haeri, M.; Bolouki, S.; Siami, M., Stability preservation analysis for frequency-based methods in numerical simulation of fractional order systems, SIAM J Numer Anal, 47, 321-338 (2008) · Zbl 1203.26012
[38] Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn, 29, 3-22 (2002) · Zbl 1009.65049
[39] Liao, T. L.; Huang, N. S., An observer-based approach for chaotic synchronization with applications to secure communications, IEEE Trans Circuits Syst I, 46, 1144-1150 (1999) · Zbl 0963.94003
[40] Andrilli, S. F.; Hecker, D., Elementary linear algebra (2010), Academic Press · Zbl 1204.15001
[41] Zhao, J.; Li, Q.; Lu, J. A.; Jiang, Z. P., Topology identification of complex dynamical networks, Chaos, 20, 023119 (2010) · Zbl 1311.93022
[42] Xu, Y.; Zhou, W.; Fang, J.a.; Lu, H., Structure identification and adaptive synchronization of uncertain general complex dynamical networks, Phys Lett A, 374, 272-278 (2009) · Zbl 1234.05219
[43] Li, Y.; Chen, Y. Q.; Podlubny, I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput Math Appl, 59, 1810-1821 (2010) · Zbl 1189.34015
[44] Zhang, W.; Tang, Y.; Fang, J.-a.; Zhu, W., Exponential cluster synchronization of impulsive delayed genetic oscillators with external disturbances, Chaos, 21, 043137 (2011) · Zbl 1317.34070
[45] Zou, W.; Lu, J.; Tang, Y.; Zhang, C.; Kurths, J., Control of delay-induced oscillation death by coupling phase in coupled oscillators, Phys Rev E, 84, 066208 (2011)
[46] Trigeassou, J. C.; Maamri, N.; Sabatier, J.; Oustaloup, A., A Lyapunov approach to the stability of fractional differential equations, Signal Process, 91, 437-445 (2011) · Zbl 1203.94059
[47] Li, C.; Zhang, F., A survey on the stability of fractional differential equations, Eur Phys J Special Topics, 193, 27-47 (2011)
[48] Grigorenko, I.; Grigorenko, E., Chaotic dynamics of the fractional Lorenz system, Phys Rev Lett, 91, 34101 (2003)
[49] Chen, L.; Lu, J.; Tse, C. K., Synchronization: an obstacle to identification of network topology, IEEE Trans Circuits Syst II, 56, 310-314 (2009)
[50] Bhalekar, S.; Daftardar-Gejji, V., Synchronization of different fractional order chaotic systems using active control, Commun Nonlinear Sci Numer Simul, 15, 3536-3546 (2010) · Zbl 1222.94031
[51] Tavazoei, M. S.; Haeri, M., Chaotic attractors in incommensurate fractional order systems, Physica D, 237, 2628-2637 (2008) · Zbl 1157.26310
[52] Lin, W.; Ma, H. F., Failure of parameter identification based on adaptive synchronization techniques, Phys Rev E, 75, 066212 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.