×

Positive solutions for nonlinear Neumann problems with concave and convex terms. (English) Zbl 1263.35114

A nonlinear elliptic Neumann problem for the \(p\)-Laplacian in a domain with a \(C^2\) boundary is considered. A critical case is investigated. A theorem about existence of a positive solutions is obtained. The results received are based at variational methods with employing the mountain pass theorem.

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
35B09 Positive solutions to PDEs
Full Text: DOI

References:

[1] Aizicovici S., Papageorgiou N.S., Staicu V.: Existence of multiple solutions with precise sign information for superlinear Neumann problems. Ann. Mat. Pura Appl. 188, 679–719 (2009) · Zbl 1188.35057 · doi:10.1007/s10231-009-0096-7
[2] Ambrosetti A., Brezis H., Cerami G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994) · Zbl 0805.35028 · doi:10.1006/jfan.1994.1078
[3] Boccardo L., Escobedo M., Peral I.: A Dirichlet problem involving critical exponents. Nonlinear Anal. 24, 1639–1648 (1995) · Zbl 0828.35042 · doi:10.1016/0362-546X(94)E0054-K
[4] Brezis H., Nirenberg L.: H 1 versus C 1 local minimizers. CRAS Paris Math. 317, 465–472 (1993) · Zbl 0803.35029
[5] Browder, F.E.: Existence theorems for nonlinear partial differential equations. Global analysis. In: Proc. Sympos. Pre Math., vol. XVI, pp. 671–688, Berkeley, California, 1968. Amer. Math. Soc. (1970) · Zbl 0164.17002
[6] Cerami G.: An existence criterion for the critical points on unbounded manifolds. Istit. Lombardo Accad. Sci. Lett. Rend. A 112(2), 332–336 (1978) · Zbl 0436.58006
[7] Costa D., Magalhaes C.: Existence results for perturbations of the p-Laplacian. Nonlinear Anal. 24, 409–418 (1995) · Zbl 0818.35029 · doi:10.1016/0362-546X(94)E0046-J
[8] Fei G.: On periodic solutions of superquadratic Hamiltonian systems. Electron. J. Differ. Equ. 8, 12 (2002) · Zbl 0999.37039
[9] Garcia Azorero J., Manfredi J., Peral Alonso I.: Sobolev versus Hölder minimizers and global multiplicity for some quasilinear elliptic equations. Commun. Contemp. Math. 2, 385–404 (2000)
[10] Guo Z., Zhang Z.: W 1,p versus C 1 local minimizers and multiplicity results for quasilinear elliptic equations. J. Math. Anal. Appl. 286, 32–50 (2003) · Zbl 1160.35382 · doi:10.1016/S0022-247X(03)00282-8
[11] Hu S., Papageorgiou N.S.: Multiplicity of solutions for parametric p-Laplacian equations with nonlinearity concave near the origin. Tohoku Math. J. 62, 1–26 (2010) · Zbl 1211.14048 · doi:10.2748/tmj/1270041023
[12] Kyritsi S., Papageorgiou N.S.: Handbook of Applied Analysis. Springer, New York (2009) · Zbl 1189.49003
[13] Li C.: The existence of infinitely many solutions of a class of nonlinear elliptic equations with Neumann boundary condition for both resonance and oscillation problems. Nonlinear Anal. 54, 431–443 (2003) · Zbl 1126.35320 · doi:10.1016/S0362-546X(03)00100-7
[14] Li S., Wu S., Zhou H.: Solutions to semilinear elliptic problems with combined nonlinearities. J. Differ. Equ. 185, 200–224 (2002) · Zbl 1032.35072 · doi:10.1006/jdeq.2001.4167
[15] Motreanu D., Motreanu V.V., Papageorgiou N.S.: Nonlinear Neumann problems near resonance. Indiana Univ. Math. J. 58, 1257–1280 (2009) · Zbl 1168.35018 · doi:10.1512/iumj.2009.58.3565
[16] Motreanu D., Papageorgiou N.S.: Existence and multiplicity of solutions for Neumann problems. J. Differ. Equ. 232, 1–35 (2007) · Zbl 1387.35159 · doi:10.1016/j.jde.2006.09.008
[17] Qian A.: Existence of infinitely many nodal solutions for a superlinear Neumann boundary value problem. Bound. Value Problems 2005, 329–335 (2005) · Zbl 1220.35052
[18] Vazquez J.-L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984) · Zbl 0561.35003 · doi:10.1007/BF01449041
[19] Willem M.: Minimax Theorems. Birkhauser, Basel (1996)
[20] Wu X., Chen L.: Existence and multiplicity of solutions for elliptic equations involving the p-Laplacian. NoDEA 15, 745–755 (2008) · Zbl 1172.35022 · doi:10.1007/s00030-008-8017-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.