×

Nonautonomous saddle-node bifurcations: random and deterministic forcing. (English) Zbl 1263.34052

This interesting paper studies the influence of (deterministic and random) external forcing on a saddle-node bifurcation pattern for interval maps. The maps under consideration are given in skew product form \[ f:\Theta\times X\to\Theta\times X,\quad (\theta,x)\mapsto(\omega(\theta),f_\theta(x)), \] where the base space \(\Theta\) is either a topological space (deterministic forcing) or a measure space (random forcing), while \(X\) (mostly) denotes a compact interval \([a,b]\). The fixed points as bifurcating objects in the unperturbed case are replaced by invariant graphs, namely measurable functions \(\phi:\Theta\to[a,b]\) satisfying \(f_\theta(\phi(\theta))=\phi(\omega(\theta))\) for almost all \(\theta\in\Theta\). On this basis, direct analogs to the classical autonomous result are obtained: Provided the fiber maps \(f_\theta\) are monotone and convex, there exists a critical parameter value distinguishing two invariant graphs from the situation of no such graph. At the critical parameter itself, two alternatives exist: In addition to the existence of a unique invariant graph, there might exist a pair of so-called pinched invariant graphs. In the quasi-periodic case they are often called “strange non-chaotic attractors”.
The proof relies on a result due to G.Keller [Fundam. Math.151, No. 2, 139–148 (1996; Zbl 0899.58033)]. Moreover, the authors extend contributions by R.Sturman and J.Stark [Nonlinearity 13, No. 1, 113–143 (2000; Zbl 1005.37016)] on the structure of invariant sets, as well as C. Núñez and R. Obaya [Discrete Contin.Dyn.Syst., Ser.B 9, No.  3–4, 701–730 (2008; Zbl 1151.37021)].
Finally, extensions to continuous time systems and various illustrative examples are given.

MSC:

34C23 Bifurcation theory for ordinary differential equations
34F10 Bifurcation of solutions to ordinary differential equations involving randomness
37H20 Bifurcation theory for random and stochastic dynamical systems
37E05 Dynamical systems involving maps of the interval

References:

[1] Arnold, L., Random Dynamical Systems (1998), Springer · Zbl 0906.34001
[2] Johnson, R.; Kloeden, P.; Pavani, R., Two-step transition in non-autonomous bifurcations: an explanation, Stoch. Dyn., 2, 1, 67-92 (2002) · Zbl 1009.34037
[3] Novo, S.; Obaya, R.; Sanz, A. M., Almost periodic and almost automorphic dynamics for scalar convex differential equations, Israel J. Math., 144, 157-189 (2004) · Zbl 1252.34047
[4] Núñez, C.; Obaya, R., A non-autonomous bifurcation theory for deterministic scalar differential equations, Discrete Contin. Dyn. Syst. Ser. B, 9, 3-4, 701-730 (2007) · Zbl 1151.37021
[5] Homburg, A. J.; Young, T., Hard bifurcations in dynamical systems with bounded random perturbations, Regul. Chaotic Dyn., 11, 2, 247-258 (2006) · Zbl 1164.34402
[6] Zmarrou, H.; Homburg, A. J., Bifurcations of stationary measures of random diffeomorphisms, Ergodic Theory Dynam. Systems, 27, 5, 1651-1692 (2007) · Zbl 1135.37021
[7] Zmarrou, H.; Homburg, A. J., Dynamics and bifurcations of random circle diffeomorphisms, Discrete Contin. Dyn. Syst. Ser. B, 10, 2-3, 719-731 (2008) · Zbl 1153.37372
[8] Jäger, T., The creation of strange non-chaotic attractors in non-smooth saddle-node bifurcations, Mem. Amer. Math. Soc., 945, 1-106 (2009) · Zbl 1188.37034
[9] Nguyen, T. Y.; Doan, T. S.; Jäger, T.; Siegmund, S., Saddle-node bifurcations in the quasiperiodically forced logistic map, Internat. J. Bifur. Chaos, 21, 5, 1427-1438 (2011) · Zbl 1248.37040
[10] Keller, G., A note on strange nonchaotic attractors, Fundam. Math., 151, 2, 139-148 (1996) · Zbl 0899.58033
[11] Alonso, A. I.; Obaya, R., The structure ob the bounded trajectories set of a scalar convex differential equation, Proc. Roy. Soc. Edinburgh, 133, 2, 237-263 (2003) · Zbl 1033.37009
[12] Stark, J.; Sturman, R., Semi-uniform ergodic theorems and applications to forced systems, Nonlinearity, 13, 1, 113-143 (2000) · Zbl 1005.37016
[13] Glendinning, P., Global attractors of pinched skew products, Dyn. Syst., 17, 287-294 (2002) · Zbl 1024.37017
[14] Stark, J., Transitive sets for quasi-periodically forced monotone maps, Dyn. Syst., 18, 4, 351-364 (2003) · Zbl 1057.37043
[15] Jäger, T.; Stark, J., Towards a classification for quasiperiodically forced circle homeomorphisms, J. Lond. Math. Soc., 73, 3, 727-744 (2006) · Zbl 1095.37013
[16] Fabbri, R.; Jäger, T.; Johnson, R.; Keller, G., A Sharkovskii-type theorem for minimally forced interval maps, Topol. Methods Nonlinear Anal., 26, 163-188 (2005) · Zbl 1089.37031
[17] Jäger, T., Quasiperiodically forced interval maps with negative Schwarzian derivative, Nonlinearity, 16, 4, 1239-1255 (2003) · Zbl 1030.37024
[18] Katok, A.; Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems (1997), Cambridge University Press · Zbl 0878.58019
[19] Stark, J., Regularity of invariant graphs for forced systems, Ergodic Theory Dynam. Systems, 19, 1, 155-199 (1999) · Zbl 1004.37018
[20] Grebogi, C.; Ott, E.; Pelikan, S.; Yorke, J. A., Strange attractors that are not chaotic, Phys. D, 13, 261-268 (1984) · Zbl 0588.58036
[21] Leboeuf, P.; Kurchan, J.; Feingold, M.; Arovas, D. P., Phase-space localization: topological aspects of quantum chaos, Phys. Rev. Lett., 65, 25, 3076-3079 (1990) · Zbl 1050.81538
[22] Geisel, T.; Ketzmerick, R.; Peschel, G., Metamorphosis of a Cantor spectrum due to classical chaos, Phys. Rev. Lett., 67, 26, 3635-3638 (1991)
[23] Jäger, T., Elliptic stars in a chaotic night, J. Lond. Math. Soc., 84, 3, 595-611 (2011) · Zbl 1252.37031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.