×

The Bergman-Shelah preorder on transformation semigroups. (English) Zbl 1263.20061

Let \(\mathcal N\) be the semigroup \(\mathbb N^{\mathbb N}\) of all mappings on the set \(\mathbb N\) of all natural numbers and let \(\mathcal{P=P(N)}\) be the set of subsets of \(\mathcal N\). A preorder \(\preccurlyeq\) on \(\mathcal P\) is defined as follows: \(U\preccurlyeq V\) if there exists a countable subset \(C\) of \(\mathcal N\) such that \(U\) is contained in the semigroup \(\langle V,C\rangle\) generated by \(V\) and \(C\). \(U\approx V\) means that \(U\preccurlyeq V\) and \(V\preccurlyeq U\).
It is proved that the Continuum Hypothesis holds if and only if there exists a subsemigroup \(S\) of \(\mathcal N\) such that \(S\approx\mathcal N\) and for all subsemigroups \(T\) of \(S\) either \(T\approx\mathcal N\) or \(T\approx\{1_{\mathbb N}\}\).
Furthermore, the authors use the semigroups \(\mathfrak F_n=\{f\in\mathcal N:|f(\mathbb N)|\leq n\}\), \(n\geq 2\), and \(\mathfrak F=\bigcup_{n\in\mathbb N}\mathfrak F_n\) and their subsemigroups for describing the properties of the preorder \(\preccurlyeq\). For example, if \(S\) is a closed subsemigroup of \(\mathcal N\) of cardinality \(2^{\aleph_0}\) then there exists a closed subsemigroup \(T\) of \(\mathfrak F_2\) such that \(|T|=2^{\aleph_0}\) and \(T\preccurlyeq S\).

MSC:

20M20 Semigroups of transformations, relations, partitions, etc.
03E50 Continuum hypothesis and Martin’s axiom
08A30 Subalgebras, congruence relations

References:

[1] Banach, Sur un théorème de M. Sierpiński, Fundam. Math. 25 pp 5– (1935)
[2] Bergman, Closed subgroups of the infinite symmetric group, Algebra Univers. 55 pp 137– (2006) · Zbl 1111.20004 · doi:10.1007/s00012-006-1959-z
[3] Cameron, Permutation groups, London Mathematical Society Student Texts Vol. 45 (1999) · Zbl 0922.20003
[4] Cohen, The independence of the continuum hypothesis, Proc. Natl. Acad. Sci. U.S.A. 50 pp 1143– (1963) · Zbl 0192.04401 · doi:10.1073/pnas.50.6.1143
[5] Cohen, The independence of the continuum hypothesis II, Proc. Natl. Acad. Sci. U.S.A. 51 pp 105– (1964) · Zbl 0192.04401 · doi:10.1073/pnas.51.1.105
[6] Erdos, An interpolation problem associated with the continuum hypothesis, Mich. Math. J. 11 pp 9– (1964) · Zbl 0121.25801 · doi:10.1307/mmj/1028999028
[7] Gödel, The Consistency of the Continuum Hypothesis, Annals of Mathematics Studies Vol. 3 (1940) · Zbl 0061.00902 · doi:10.1515/9781400881635
[8] Kechris, Classical descriptive set theory, Graduate Texts in Mathematics Vol. 156 (1995) · Zbl 0819.04002 · doi:10.1007/978-1-4612-4190-4
[9] Kunen, Set theory, Studies in Logic and the Foundations of Mathematics Vol. 102 (1983)
[10] Mesyan, Generating self-map monoids of infinite sets, Semigroup Forum 75 pp 649– (2007) · Zbl 1133.20050 · doi:10.1007/s00233-007-0731-9
[11] Mitchell, Generating transformation semigroups using endomorphisms of preorders, graphs, and tolerances, Ann, Pure Appl. Log. 161 pp 1471– (2010) · Zbl 1231.20058 · doi:10.1016/j.apal.2010.05.001
[12] Morayne, On differentiability of Peano type functions, Colloq. Math. 53 pp 129– (1987) · Zbl 0625.26010
[13] Sierpiński, Hypothèse du continu, Monografie Matematyczne Vol. 4 (1934)
[14] Sierpiński, Sur les suites infinies de fonctions définies dans les ensembles quelconques, Fundam. Math. 24 pp 209– (1935) · JFM 61.0229.03
[15] Steprāns, Handbook of the History of Logic, Sets and Extensions in the Twentieth Century pp 73– (2012) · Zbl 1255.03013 · doi:10.1016/B978-0-444-51621-3.50002-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.