×

Higher-weight Heegner points. (English) Zbl 1263.11058

Summary: We formulate a conjecture that partially generalizes the Gross-Kohnen-Zagier theorem to higher-weight modular forms. For \(f \in S_{2k}(N)\) satisfying certain conditions, we construct a map from the Heegner points of level \(N\) to a complex torus \(\mathbb{C}/L_f\) defined by \(f\). We define higher-weight analogues of Heegner divisors on \(\mathbb{C}/L_f\).
We conjecture that they all lie on a line and that their positions are given by the coefficients of a certain Jacobi form corresponding to \(f\). In weight 2, our map is the modular parameterization map (restricted to Heegner points), and our conjectures are implied by Gross-Kohnen-Zagier. For any weight, we expect that our map is the Abel-Jacobi map on a certain modular variety, and so our conjectures are consistent with the conjectures of Beilinson-Bloch. We have verified that our map is the Abel-Jacobi map for weight 4. We provide numerical evidence to support our conjecture for a variety of examples.

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F37 Forms of half-integer weight; nonholomorphic modular forms
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture

Software:

SageMath

References:

[1] DOI: 10.1215/S0012-7094-99-09710-7 · Zbl 0967.11022 · doi:10.1215/S0012-7094-99-09710-7
[2] Eichler Martin, The Theory of Jacobi Forms, Progress in Mathematics 55 (1985) · Zbl 0554.10018 · doi:10.1007/978-1-4684-9162-3
[3] DOI: 10.1007/BF01458081 · Zbl 0641.14013 · doi:10.1007/BF01458081
[4] DOI: 10.3792/pjaa.71.30 · Zbl 0853.11041 · doi:10.3792/pjaa.71.30
[5] Razar, Michael J. ”Values of Dirichlet Series at Integers in the Critical Strip.”. Modular Functions of One Variable, VI (Proc. Second Internat. Conf., Univ. Bonn. 1976, Bonn. pp.1–10. Berlin: Springer. Lecture Notes in Math. 627, [Razar 77]
[6] DOI: 10.1215/S0012-7094-86-05343-3 · Zbl 0623.14018 · doi:10.1215/S0012-7094-86-05343-3
[7] DOI: 10.2307/2154210 · Zbl 0811.14003 · doi:10.2307/2154210
[8] Shimura Goro, Introduction to the Arithmetic Theory of Automorphic Functions (1994) · Zbl 0872.11023
[9] DOI: 10.1007/BF01394347 · Zbl 0651.10020 · doi:10.1007/BF01394347
[10] Šokurov V. V., Izv. Akad. Nauk SSSR Ser. Mat. 44 pp 670– (1980)
[11] Zagier Don, Advances in Number Theory (Kingston, ON, 1991) pp 81– (1993) · Zbl 0728.11062
[12] Waldspurger J.-L., J. Math. Pures Appl. (9) 60 pp 375– (1981)
[13] DOI: 10.1007/s002220050179 · Zbl 0882.11029 · doi:10.1007/s002220050179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.