×

Tevatron \(Wij\) anomaly for a model with two different mechanisms for mass generation of gauge fields. (English) Zbl 1262.81244

Summary: The latest fermilab collider detector (CDF) anomaly, namely the excess of dijet events in the invariant-mass window 120-160 GeV in associated production with a \(W\) boson, is explained by a baryonic new neutral vector \(C\)-boson, of mass (145 GeV), predicted by the Wu mechanisms for mass generation of gauge field. The standard model (SM) \(W, Z\)-bosons normally get their masses through the coupling with the SM Higgs particle of mass 114-200 GeV. Here, the baryonic \(C\)-boson has negligible couplings with leptons and, thus, is unaffected by the dilepton \(C\) constraints.

MSC:

81V22 Unified quantum theories
81T13 Yang-Mills and other gauge theories in quantum field theory
81R40 Symmetry breaking in quantum theory
81V10 Electromagnetic interaction; quantum electrodynamics
81V15 Weak interaction in quantum theory
Full Text: DOI

References:

[1] Aaltonen, T., et al. (CDF Collaboration): Phys. Rev. Lett. 101, 20 (2008)
[2] Aaltonen, T., et al. (CDF Collaboration): 1101.0034 [hep-ex]
[3] Abazov, V.M., et al. (DCollaboration): Phys. Rev. Lett. 100, 142002 (2008)
[4] Aaltonen, T., et al. (CDF Collaboration): 1104.0699 [hep-ex]
[5] Holdom, B.: Phys. Rev. D 24, 1441 (1981) · doi:10.1103/PhysRevD.24.1441
[6] Appelquist, T.W., Karabali, D., Wijewardhana, L.C.R.: Phys. Rev. Lett. 57, 957 (1986) · doi:10.1103/PhysRevLett.57.957
[7] Yamawaki, K., Bando, M., Matumoto, K.-I.: Phys. Rev. Lett. 56, 1335 (1986) · doi:10.1103/PhysRevLett.56.1335
[8] Akiba, T., Yanagida, T.: Phys. Lett. B 169, 432 (1986) · doi:10.1016/0370-2693(86)90385-0
[9] Goldstone, J.: Nuovo Cimento 19, 154 (1961) · Zbl 0099.23006 · doi:10.1007/BF02812722
[10] Nambu, Y., Jona-Lasinio, G.: Phys. Rev. 122, 34 (1961) · doi:10.1103/PhysRev.122.345
[11] Goldstone, J., Salam, A., Weinberg, S.: Phys. Rev. 127 (1970)
[12] Higgs, P.W.: Phys. Lett. 12, 13218 (1964)
[13] Englert, F., Brout, R.: Phys. Rev. Lett. 13, 321 (1964) · doi:10.1103/PhysRevLett.13.321
[14] Guralnik, G.S., Hagen, C.R., Kibble, T.W.B.: Phys. Rev. Lett. 585 (1964)
[15] Higgs, P.W.: Phys. Rev. 145, 1156 (1966) · doi:10.1103/PhysRev.145.1156
[16] Wu, N.: Commun. Theor. Phys. 36, 169 (2001)
[17] Wu, N.: hep-ph/9802236
[18] Wu, N.: hep-ph/9802237
[19] Wu, N.: hep-ph/9805453
[20] Weinberg, S.: Phys. Rev. Lett. 19, 1264 (1976) · doi:10.1103/PhysRevLett.19.1264
[21] Weinberg, S.: Phys. Rev. D 5, 1412 (1972) · doi:10.1103/PhysRevD.5.1412
[22] Salam, A.: In: Svartholm, N. (ed.) Elementary Particle Theory: Relativistic Groups and Analyticity Nobel Symposium, vol. 8. Almqvist and Wiksell, Stockholm (1968)
[23] Glashow, S.: Nucl. Phys. 22, 579 (1961) · doi:10.1016/0029-5582(61)90469-2
[24] Barger, V., Phillips, R.J.N.: Collider Physics. Addison-Wesley, Reading (1987)
[25] Alitti, J., et al. (UA2 Collaboration): Z. Phys. C 49, 17 (1991) · doi:10.1007/BF01570793
[26] Ohnemus, J.: Phys. Rev. D 47, 940 (1993) · doi:10.1103/PhysRevD.47.940
[27] Abazov, V.M., et al. (D0 Collaboration): Study of the dijet invariant mass distribution in $p\(\backslash\)overline{p} \(\backslash\)rightarrow W(\(\backslash\)rightarrow\(\backslash\)ell\(\backslash\)nu) +jj$ final states at ps=1.96 TeV, 1106.1921 [hep-ex]
[28] Graham, G.R.: Structure beyond the standard model. Philos. Trans. R. Soc. Lond. A 359, 405–419 (2001) · doi:10.1098/rsta.2000.0732
[29] Kingman, C., Jeonghyeon, S.: Tevatron Wjj anomaly and the baryonic Z’ solution. 1104.1375 [hep-ph]
[30] Koorambas, E.: Commun. Theor. Phys. 57, 241 (2012). hal-00613781 · Zbl 1247.83055 · doi:10.1088/0253-6102/57/2/14
[31] Koorambas, E.: hal-00613793
[32] Weinberg, S.: The quantum theory of field, vol. 2, pp. 2–5. Cambridge University Press, Cambridge (1996) 308–309 · Zbl 0959.81002
[33] Berezin, F.A.: Sov. Phys. Usp. 23, 763 (1981) · doi:10.1070/PU1980v023n11ABEH005062
[34] Gelfand, I.M., Yaglom, A.M.: Usp. Mat. Nauk 11, 77 (1956)
[35] Fomin, P.I.: About the nature of gauge fields and interactions. In: Sokolov, S.N. (ed.) Proc. 10 Workshop on Problems on High Energy Physics and Field Theory, Protvino, 1987, p. 229. Nauka, Moscow (1988)
[36] Kuzmenko, T.Yu.: In: Proceedings of Institute of Mathematics of NAS of Ukraine 2000, vol. 30, Part 2 pp. 501–506 (2000) · Zbl 0990.81072
[37] Faddeev, L.D., Slavnov, A.A.: Gauge Fields: Introduction to Quantum Theory. Benjamin-Cummings, London (1980) · Zbl 0486.53052
[38] Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill, New York (1980) · Zbl 0453.05035
[39] Utiyama, R.: Phys. Rev. 101, 1597 (1956) · Zbl 0070.22102 · doi:10.1103/PhysRev.101.1597
[40] Coll, C.D.F.: Search for high mass resonances decaying to muon pairs. CDF/PHYS/EXO/PUBLIC/10165
[41] Barger, V.D., Cheung, K.M., Langacker, P.: Phys. Lett. B 381, 226 (1996). arXiv:hep-ph/9604298 · doi:10.1016/0370-2693(96)00554-0
[42] The LEP Collaborations ALEPH, DELPHI, L3, OPAL and the LEP Electroweak WorkingGroup, CERN-PRE/95-172; P.B. Renton, plenary talk at Int. Conf. on High Energy Physics, Beijing (1995)
[43] Erler, J., Langacker, P., Nakamura, K., et al. (Particle Data Group): J. Phys. G 37, 075021 (2010) · doi:10.1088/0954-3899/37/6/064001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.