×

Power series and analyticity over the quaternions. (English) Zbl 1262.30053

Let \(H\) denote the skew field of quaternions endowed with the usual multiplication on the standard basis \(1\), \(i\), \(j\), \(k\) extended by distributivity. G. Gentili and D. C. Struppa [Adv. Math. 216, No. 1, 279–301 (2007; Zbl 1124.30015)] showed that for a power series \(\sum_{n\in\mathbb{N}} q^n a_n\), where \(\{a_n\}_{n\in\mathbb{N}}\) and \(q\) are in \(H\), there is an \(R\) in \([0,+\infty]\) such that the series converges absolutely and uniformly on compact sets in \(B(0,R)= \{q\in H : |q|< R\}\) and \(\sigma\) diverges in \(\{q\in H : |q|> R\}\). The authors explain the difficulties in trying to define analyticity through power series of the form \(\sum(q- p)^na_n\) for \(p\in H\) and \(p\neq 0\). They introduce a distance \(\sigma\) which is not topologically equivalent to the Euclidean distance. With the usual addition operation and the multiplication operation \(*\) defined by \[ \Biggl(\sum_{n\in\mathbb{N}} q^na_n\Biggr)* \Biggl(\sum_{n\in\mathbb{N}} q^nb_n\Biggr)= \sum_{n\in\mathbb{N}} q^n \sum^n_{k=0} a_k b_{n-k}, \] the authors are able to prove that for a sequence \(\{a_n\}_{n\in\mathbb{N}}\) in \(H\) and \(R\) in \([0,+\infty]\) such that \(1/R= \limsup_{n\to\infty} |a_n|^{1/n}\), for all \(p\in H\), the series \(f(q)= \sum_{n\in\mathbb{N}} (q- p)^{* n}a_n\) converges absolutely and uniformly on compact subsets of \(\sum(p,R)\) and it does not converge at any point of \(H\setminus\overline{\sum(p, R)}\). \(R\) is then the \(\sigma\)-radius of convergence of \(f(q)\).
Two types of analyticity are defined and related. If \(\Omega\) is an open subset of \(H\), a function \(f: \Omega\to H\) is strongly analytic at \(p\) in \(\Omega\) if there is a power series \(\sum(q-p)^{*n}a_n\) converging in a neighborhood \(U\) of \(p\) in \(\Omega\) such that \(f(q)= \sum_{n\in\mathbb{N}}(q- p)^{*n}a_n\) for all \(q\) in \(U\). \(f\) is termed strongly analytic if it is strongly analytic for all \(p\) in \(\Omega\). The main sharp result in this connection is that any function defined by a power series \(\sum_{n\in\mathbb{N}} q^na_n\) which converges in \(B(0,R)\) is strongly analytic in the open set \(JA(B)= \big\{p\in H : 2|\text{Im}(p)|< R-|p|\big\}\). Since \(A(H)= H\), all quaternionic entire functions are strongly analytic in \(H\). If \(B\neq H\), \(A(B)\) is strictly contained in \(B\). The weaker notion of analyticity defined on a \(\sigma\)-open subset of \(H\) and termed \(\sigma\)-analytic produces the theorem that a power series \(\sum q^na_n\) having radius of convergence \(R\) defines a \(\sigma\)-analytic function on \(JB(0,R)\).
Analyticity of slice regular functions, recently introduced by Gentili and Struppa in [loc. cit.] and by F. Colombo et al. in [Adv. Math. 222, No. 5, 1793–1808 (2009; Zbl 1179.30052)], is studied in the last secton of the paper. Strikingly, the authors prove a quaternionic function is slice regular in a domain if and only if it is \(\sigma\)-analytic on the same domain. The paper is well-written and provides valuable insights on analyticity of quaternionic functions.

MSC:

30G35 Functions of hypercomplex variables and generalized variables

References:

[1] Colombo F., Sabadini I.: On some properties of the quaternionic functional calculus. J. Geom. Anal. 19(3), 601–627 (2009) · Zbl 1166.47018 · doi:10.1007/s12220-009-9075-x
[2] Colombo F., Gentili G., Sabadini I., Struppa D.C.: A functional calculus in a noncommutative setting. Electron. Res. Announc. Math. Sci. (electronic) 14, 60–68 (2007) · Zbl 1137.47014
[3] Colombo F., Sabadini I., Struppa D.C.: A new functional calculus for noncommuting operators. J. Funct. Anal. 254(8), 2255–2274 (2008) · Zbl 1143.47012 · doi:10.1016/j.jfa.2007.12.008
[4] Colombo F., Gentili G., Sabadini I., Struppa D.: Extension results for slice regular functions of a quaternionic variable. Adv. Math. 222(5), 1793–1808 (2009) · Zbl 1179.30052 · doi:10.1016/j.aim.2009.06.015
[5] Colombo F., Gentili G., Sabadini I.: A Cauchy kernel for slice regular functions. Ann. Global Anal. Geom. 37, 361–378 (2010) · Zbl 1193.30069 · doi:10.1007/s10455-009-9191-7
[6] Cullen C.G.: An integral theorem for analytic intrinsic functions on quaternions. Duke Math. J. 32, 139–148 (1965) · Zbl 0173.09001 · doi:10.1215/S0012-7094-65-03212-6
[7] De Leo S., Rotelli P.P.: Quaternionic analyticity. Appl. Math. Lett. 16(7), 1077–1081 (2003) · Zbl 1067.30089 · doi:10.1016/S0893-9659(03)90097-8
[8] Eilenberg S., Niven I.: The fundamental theorem of algebra for quaternions. Bull. Am. Math. Soc. 50, 246–248 (1944) · Zbl 0063.01228 · doi:10.1090/S0002-9904-1944-08125-1
[9] Gentili G., Stoppato C.: Zeros of regular functions and polynomials of a quaternionic variable. Michigan Math. J. 56(3), 655–667 (2008) · Zbl 1184.30048 · doi:10.1307/mmj/1231770366
[10] Gentili G., Stoppato C.: The open mapping theorem for regular quaternionic functions. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) VIII(4), 805–815 (2009) · Zbl 1201.30067
[11] Gentili G., Struppa D.C.: A new theory of regular functions of a quaternionic variable. Adv. Math. 216(1), 279–301 (2007) · Zbl 1124.30015 · doi:10.1016/j.aim.2007.05.010
[12] Hoshi S., Ochiai H.: On analytic functions of quaternion functions. Mem. Fac. Eng. Miyazaki Univ. 4, 18 (1964)
[13] Lam, T.Y.: A first course in noncommutative rings. In: Graduate Texts in Mathematics, vol. 131. Springer-Verlag, New York (1991) · Zbl 0728.16001
[14] Niven I.: Equations in quaternions. Am. Math. Monthly 48, 654–661 (1941) · Zbl 0060.08002 · doi:10.2307/2303304
[15] Pumplün S., Walcher S.: On the zeros of polynomials over quaternions. Commun. Algebra 30(8), 4007–4018 (2002) · Zbl 1024.12002 · doi:10.1081/AGB-120005832
[16] Remmert, R.: Theory of complex functions. In: Graduate Texts in Mathematics, chap. 5 Sect. 3, vol. 122, pp. 151–152. Springer-Verlag, New York, Readings in Mathematics (1991) · Zbl 0780.30001
[17] Sudbery A.: Quaternionic analysis. Math. Proc. Cambridge Philos. Soc. 85(2), 199–224 (1979) · Zbl 0399.30038 · doi:10.1017/S0305004100055638
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.