×

Convergence of approximate solutions to an elliptic-parabolic equation without the structure condition. (English) Zbl 1261.35094

The authors consider the Cauchy-Dirichlet problem for the elliptic-parabolic equation \( b(u)_t + \mathrm{div}F(u) -\bigtriangleup u = f\) in a bounded domain. The structure condition \(b(z) = b( \widehat{z})\Rightarrow F(z) = F(\widehat{z})\) is not supposed to be satisfied. The goal of this paper is to give some partial uniqueness and continuous dependence results for the problem without the structure condition and the question of convergence of discretization methods. As in the work of K. Ammar and P. Wittbold [Proc. R. Soc. Edinb., Sect. A, Math. 133, No. 3, 477–496 (2003; Zbl 1077.35103)], where existence was established, monotonicity and penalization are the main tools of their study. In the case of a Lipschitz continuous flux \(F\), they justify the uniqueness of \(u\) (the uniqueness of \(b(u)\) is well-known) and prove the continuous dependence in \(L^1\) for the case of strongly convergent finite energy data. The convergence of the \(\varepsilon\)-discretized solutions used in the semigroup approach to the problem is proved, and convergence of a monotone time-implicit finite volume scheme is proved also. In the case of a merely continuous flux \(F\), the authors show that the problem admits a maximal and a minimal solution.

MSC:

35M13 Initial-boundary value problems for PDEs of mixed type
35K59 Quasilinear parabolic equations
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

Citations:

Zbl 1077.35103
Full Text: DOI

References:

[1] Alibaud N., Andreianov B., Bendahmane M.: Renormalized solutions of the fractional Laplace equation. C. R. Acad. Sci., Paris, Sér. A 348(13-14), 759-762 (2010) · Zbl 1198.35285 · doi:10.1016/j.crma.2010.05.006
[2] Alt H.W., Luckhaus S.: Quasilinear elliptic-parabolic differential equations. Mat. Z. 183, 311-341 (1983) · Zbl 0497.35049 · doi:10.1007/BF01176474
[3] Ammar K., Wittbold P.: Existence of renormalized solutions of degenerate elliptic-parabolic problems. Proc. R. Soc. Edinb. 133A(3), 477-496 (2003) · Zbl 1077.35103 · doi:10.1017/S0308210500002493
[4] Andreianov, B.: Quelques problèmes de la théorie des systèmes paraboliques dégénérés non-linéaires et des lois de conservation. PhD thesis, Univ. de Franche-Comté (2000)
[5] Andreianov B., Bendahmane M., Karlsen K.H.: Finite volume schemes for doubly nonlinear degenerate parabolic equations. J. Hyperbolic Differ. Equ. 7(1), 1-67 (2010) · Zbl 1207.35020 · doi:10.1142/S0219891610002062
[6] Andreianov B., Bendahmane M., Ruiz Baier R.: Analysis of a finite volume method for a cross-diffusion model in population dynamics. Math. Models Methods Appl. Sci. 21(2), 307-344 (2011) · Zbl 1228.65178 · doi:10.1142/S0218202511005064
[7] Andreianov B., Igbida N.: Revising uniqueness for a nonlinear diffusion-convection equation. J. Differ. Equ. 227(1), 69-79 (2006) · Zbl 1096.35064 · doi:10.1016/j.jde.2005.09.003
[8] Andreianov B., Igbida N.: Uniqueness for the Dirichlet elliptic-parabolic problem. Proc. R. Soc. Edinb. 137A, 1119-1133 (2007) · Zbl 1134.35081
[9] Andreianov, B., Igbida, N.: On uniqueness techniques for degenerate convection-diffusion problems. Int. J. Dyn. Syst. Differ. Equ. (accepted). http://hal.archives-ouvertes.fr/hal-00553819 · Zbl 1263.35007
[10] Andreianov B., Gutnic M., Wittbold P.: Convergence of finite volume approximations for a nonlinear elliptic-parabolic problem: a “continuous” approach. SIAM J. Numer. Anal. 42(1), 228-251 (2004) · Zbl 1080.65081 · doi:10.1137/S0036142901400006
[11] Bénilan, Ph., Crandall, M.G., Pazy, A.: Nonlinear Evolution Equations in Banach Spaces. Preprint book · Zbl 0635.34013
[12] Benilan Ph., Wittbold P.: On mild and weak solutions of elliptic-parabolic problems. Adv. Differ. Equ. 1(6), 1053-1073 (1996) · Zbl 0858.35064
[13] Bénilan, Ph., Wittbold, P.: Sur un problème parabolique-elliptique. Math. Model. Num. Anal. 33(1), 121-127 (1999, in French) · Zbl 0922.35080
[14] Boccardo, L., Gallouët, Th., Murat, F.: Unicité de la solution de certaines équations elliptiques non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 315(11), 1159-1164 (1992, in French) · Zbl 0789.35056
[15] Brézis, H., Kinderlehrer, D., Stampacchia, G.: Sur une nouvelle formulation du problème de l’ecoulement à travers une digue. C. R. Acad. Sci., Paris, Sér. A 287, 711-714 (1978, in French) · Zbl 0391.76072
[16] Carrillo J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147, 269-361 (1999) · Zbl 0935.35056 · doi:10.1007/s002050050152
[17] Carrillo J., Wittbold P.: Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems. J. Differ. Equ. 156(1), 93-121 (1999) · Zbl 0932.35129 · doi:10.1006/jdeq.1998.3597
[18] Crandall M.G., Tartar L.: Some relations between nonexpansive and order preserving mappings. Proc. AMS 78(3), 385-390 (1980) · Zbl 0449.47059 · doi:10.1090/S0002-9939-1980-0553381-X
[19] Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. In: Studies in Advanced Mathematics. CRC Press (1992) · Zbl 0804.28001
[20] Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. VII. North-Holland (2000) · Zbl 0981.65095
[21] Eymard R., Gallouët T., Herbin R., Michel A.: Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92(1), 41-82 (2002) · Zbl 1005.65099 · doi:10.1007/s002110100342
[22] Kruzhkov, S.N.: Results on the nature of the continuity of solutions of parabolic equations and some of their applications. Mat. Zametki 6(1), 97-108 (1969); English tr. in Math. Notes 6(1), 517-523 (1969) · Zbl 0189.10602
[23] Otto F.: L1 contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differ. Equ. 131, 20-38 (1996) · Zbl 0862.35078 · doi:10.1006/jdeq.1996.0155
[24] Zimmermann, A.: Renormalized solutions for nonlinear partial differential equations with variable exponents and L1-data. PhD thesis, Technische University Berlin (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.