×

Restricted \(p\)-isometry property and its application for nonconvex compressive sensing. (English) Zbl 1260.94028

Summary: Compressed sensing is a new scheme which shows the ability to recover sparse signals from fewer measurements, using \(l _1\)-minimization. Recently, R. Chartrand and V. Staneva showed in [Inverse Probl. 24, No. 3, Article ID 035020, 14 p. (2008; Zbl 1143.94004)] that \(l_p\)-minimization with \(0<p<1\) recovers sparse signals from fewer linear measurements than does \(l_1\)-minimization. They proved that \(l_p\)-minimization with \(0<p<1\) recovers \(S\)-sparse signals \(x \in \mathbb R^{N }\) from fewer Gaussian random measurements for some smaller \(p\) with probability exceeding \(1-1/ {N\choose S}\). The first aim of this paper is to show that the above result is right for the case of Gaussian random measurements with probability exceeding \(1-2e^{-c(p)M}\), where \(M\) is the numbers of rows of Gaussian random measurements and \(c(p)\) is a positive constant that guarantees \(1-2e^{-c(p)M}>1-1/{N\choose S}\) for \(p\) smaller. The second purpose of the paper is to show that under certain weaker conditions, decoders \(\Delta_p\) are stable in the sense that they are \((2,p)\) instance optimal for a large class of encoders for \(0<p<1\).

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
60B20 Random matrices (probabilistic aspects)
90C90 Applications of mathematical programming

Citations:

Zbl 1143.94004

References:

[1] Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28, 253–263 (2008) · Zbl 1177.15015 · doi:10.1007/s00365-007-9003-x
[2] Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006) · Zbl 1231.94017 · doi:10.1109/TIT.2005.862083
[3] Candès, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207–1223 (2006) · Zbl 1098.94009 · doi:10.1002/cpa.20124
[4] Candès, E.J., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory 52(1), 5406–5425 (2006) · Zbl 1309.94033 · doi:10.1109/TIT.2006.885507
[5] Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51, 4203–4215 (2005) · Zbl 1264.94121 · doi:10.1109/TIT.2005.858979
[6] Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14, 707–710 (2007) · doi:10.1109/LSP.2007.898300
[7] Chartrand, R., Staneva, V.: Restricted isometry porperties and nonconvex compressive sensing. Inverse Problems 24, 1–14 (2009) · Zbl 1143.94004
[8] Cohen, A., Dahmen, W., DeVore, R.: Compressed sensing and best k–term approximation. J. Am. Math. Soc. 22, 211–245 (2009) · Zbl 1206.94008 · doi:10.1090/S0894-0347-08-00610-3
[9] DeVore, R., Petrova, G., Wojtaczszyk, P.: Instance–optimality in probability with an l 1–minimization decoder. Appl. Comput. Harmon. Anal. 27, 275–288 (2009) · Zbl 1177.94104 · doi:10.1016/j.acha.2009.05.001
[10] Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006) · Zbl 1288.94016 · doi:10.1109/TIT.2006.871582
[11] Donoho, D.: For most large underdetermined systems of linear equations the minimal l 1–norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59, 797–829 (2006) · Zbl 1113.15004 · doi:10.1002/cpa.20132
[12] Donoho, D., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via l 1 minimization. Proc. Natl. Acad. Sci. USA 100(5), 2197–2202 (2003) · Zbl 1064.94011 · doi:10.1073/pnas.0437847100
[13] Ge, D.D., Jiang, X.Y., Ye, Y.Y.: A note on the complexity of l p minimization. Math. Program., Ser. B 129, 285–299 (2011). doi: 10.1007/s10107-011-0470-2 · Zbl 1226.90076
[14] Foucart, S., Lai, M.J.: Sparsest solutions of underdetermined linear systems via l q –minimization for 0&lt;q1. Appl. Comput. Harmon. Anal. 26, 395–407 (2009) · Zbl 1171.90014 · doi:10.1016/j.acha.2008.09.001
[15] Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inf. Theory 49, 3320–3325 (2003) · Zbl 1286.94032 · doi:10.1109/TIT.2003.820031
[16] Saab, R., Yılmaz, Ö.: Sparse revovery by non–convex optimization–instance optimality. Appl. Comput. Harmon. Anal. 29, 30–48 (2010) · Zbl 1200.90158 · doi:10.1016/j.acha.2009.08.002
[17] Wojtaszczyk, P.: Stability and instance optimality for Gaussian measurements in compressed sensing. Found. Comput. Math. 10, 1–13 (2010) · Zbl 1189.68060 · doi:10.1007/s10208-009-9046-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.