×

Coherent state functional integral in loop quantum cosmology: alternative dynamics. (English) Zbl 1260.83120

Summary: The coherent state functional integral for the minisuperspace model of loop quantum cosmology is studied. By the well-established canonical theory, the transition amplitude in the path integral representation of loop quantum cosmology with alternative dynamics can be formulated through group averaging. The effective action and Hamiltonian with higher-order quantum corrections are thus obtained. It turns out that for a nonsymmetric Hamiltonian constraint operator, the Moyal (star)-product emerges naturally in the effective Hamiltonian. For the corresponding symmetric Hamiltonian operator, the resulted effective theory implies a possible quantum cosmological effect in a large scale limit in the alternative dynamical scenario, which coincides with the result in canonical approach. Moreover, the first-order modified Friedmann equation still contains the particular information of alternative dynamics and hence admits the possible phenomenological distinction between the different proposals of quantum dynamics.

MSC:

83F05 Relativistic cosmology
83C47 Methods of quantum field theory in general relativity and gravitational theory
81R30 Coherent states
81S40 Path integrals in quantum mechanics

References:

[1] DOI: 10.1017/CBO9780511755804 · doi:10.1017/CBO9780511755804
[2] DOI: 10.1088/0264-9381/21/15/R01 · Zbl 1077.83017 · doi:10.1088/0264-9381/21/15/R01
[3] DOI: 10.1017/CBO9780511755682 · Zbl 1129.83004 · doi:10.1017/CBO9780511755682
[4] DOI: 10.1142/S0218271807010894 · Zbl 1200.83002 · doi:10.1142/S0218271807010894
[5] Bojowald M., Living Rev. Relativ. 8 pp 11– · Zbl 1255.83133 · doi:10.12942/lrr-2005-11
[6] DOI: 10.1007/s10714-009-0763-4 · Zbl 1177.83003 · doi:10.1007/s10714-009-0763-4
[7] DOI: 10.1103/PhysRevLett.86.5227 · doi:10.1103/PhysRevLett.86.5227
[8] DOI: 10.1103/PhysRevLett.96.141301 · Zbl 1153.83417 · doi:10.1103/PhysRevLett.96.141301
[9] DOI: 10.1103/PhysRevD.73.124038 · doi:10.1103/PhysRevD.73.124038
[10] DOI: 10.1103/PhysRevD.74.084003 · Zbl 1197.83047 · doi:10.1103/PhysRevD.74.084003
[11] DOI: 10.1016/j.physletb.2009.10.042 · doi:10.1016/j.physletb.2009.10.042
[12] DOI: 10.1088/0264-9381/27/13/135020 · Zbl 1195.83091 · doi:10.1088/0264-9381/27/13/135020
[13] DOI: 10.1103/PhysRevD.82.124043 · doi:10.1103/PhysRevD.82.124043
[14] DOI: 10.1103/PhysRevD.77.024046 · doi:10.1103/PhysRevD.77.024046
[15] DOI: 10.1088/0264-9381/28/2/025003 · Zbl 1207.83019 · doi:10.1088/0264-9381/28/2/025003
[16] DOI: 10.1103/PhysRevLett.102.051301 · doi:10.1103/PhysRevLett.102.051301
[17] DOI: 10.1016/j.physletb.2009.10.072 · doi:10.1016/j.physletb.2009.10.072
[18] Ma Y., J. Cosmol. 13 pp 4074–
[19] DOI: 10.1017/CBO9780511622649 · doi:10.1017/CBO9780511622649
[20] DOI: 10.1017/S0305004100000487 · doi:10.1017/S0305004100000487
[21] DOI: 10.1142/9789812707468 · doi:10.1142/9789812707468
[22] DOI: 10.1103/PhysRevD.85.063515 · doi:10.1103/PhysRevD.85.063515
[23] DOI: 10.4310/ATMP.2003.v7.n2.a2 · doi:10.4310/ATMP.2003.v7.n2.a2
[24] DOI: 10.1088/0264-9381/20/6/302 · Zbl 1029.83015 · doi:10.1088/0264-9381/20/6/302
[25] DOI: 10.1088/0264-9381/19/4/313 · Zbl 1028.83017 · doi:10.1088/0264-9381/19/4/313
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.