×

New two-dimensional ice models. (English) Zbl 1260.82018

Summary: This paper presents a new approach for enumerating all hydrogen bond arrangements of ice-like systems with periodic boundary conditions. It is founded on a topological procedure for the dimensional reduction and a new variant of the transfer matrix method based on small conditional transfer matrices. We consider a couple of new two-dimensional ice models on very unusual lattices. One of them is the twisted square ice model with crossing H-bonds. The other is the digonal-hexagonal model with double H-bonds. In spite of their uncommonness, these models are quite realistic, because from the standpoint of combinatorics and topology they are equivalent to the layers of usual hexagonal ice Ih under periodic boundary conditions in one of the directions. The exact proton configuration statistics for a number of 2D-expanded unit cells of hexagonal ice Ih and the residual entropy of the new ice models in the large system limit are presented.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
Full Text: DOI

References:

[1] Bernal, J.D., Fowler, R.H.: A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933) · doi:10.1063/1.1749327
[2] Delgado Friedrichs, O., Dress, A.W.M., Huson, D.H., Klinowski, J., Mackay, A.L.: Systematic enumeration of crystalline networks. Nature 400, 644–647 (1999) · doi:10.1038/23210
[3] Feibelman, P.J., Alavi, A.: Entropy of H2O wetting layers. J. Phys. Chem. B 108, 14362–14367 (2004) · doi:10.1021/jp049934q
[4] Hirsch, T.K., Ojamäe, L.: Quantum-chemical and force-field investigations of ice Ih: computation of proton-ordered structures and prediction of their lattice energies. J. Phys. Chem. B 108, 15856–15864 (2004) · doi:10.1021/jp048434u
[5] Johnston, J.C., Kastelowitz, N., Molinero, V.: Liquid to quasicrystal transition in bilayer water. J. Chem. Phys. 133, 154516 (2010) · doi:10.1063/1.3499323
[6] Kastelowitz, N., Johnston, J.C., Molinero, V.: The anomalously high melting temperature of bilayer ice. J. Chem. Phys. 132, 124511 (2010)
[7] Kimmel, G.A., Matthiesen, J., Baer, M., Mundy, C.J., Petrik, N.G., Smith, R.S., Dohnalek, Z., Kay, B.D.: No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene. J. Am. Chem. Soc. 131, 12838–12844 (2009) · doi:10.1021/ja904708f
[8] Kirov, M.V.: Residual entropy of ice nanotubes and ice layers. Physica A (2012). doi: 10.1016/j.physa.2012.10.041
[9] Kirov, M.V.: Residual entropy of polyhedral water clusters. Exact relations. J. Struct. Chem. 35, 126–128 (1994) · doi:10.1007/BF02578511
[10] Kirov, M.V.: The transfer-matrix and max-plus algebra method for global combinatorial optimization: application to cyclic and polyhedral water clusters. Physica A 388, 1431–1445 (2009) · doi:10.1016/j.physa.2008.12.050
[11] Kirov, M.V., Fanourgakis, G.S., Xantheas, S.S.: Identifying the most stable networks in polyhedral water clusters. Chem. Phys. Lett. 461, 180–188 (2008) · doi:10.1016/j.cplett.2008.04.079
[12] Koga, K., Gao, G.T., Tanaka, H., Zeng, X.C.: Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412, 802–805 (2001) · doi:10.1038/35090532
[13] Koga, K., Zeng, X.C., Tanaka, H.: Freezing of confined water: a bilayer ice phase in hydrophobic nanopores. Phys. Rev. Lett. 79, 5262 (1997) · doi:10.1103/PhysRevLett.79.5262
[14] Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev. 60, 252–262 (1941) · Zbl 0027.28505 · doi:10.1103/PhysRev.60.252
[15] Kuo, J.-L., Coe, J.V., Singer, S.J., Band, Y.B., Ojamäe, L.: On the use of graph invariants for efficiently generating hydrogen bond topologies and predicting physical properties of water clusters and ice. J. Chem. Phys. 114, 2527–2540 (2001) · doi:10.1063/1.1336804
[16] Kuo, J.-L.: The low-temperature proton-ordered phases of ice predicted by ab initio method. Phys. Chem. Chem. Phys. 7, 3733–3737 (2005) · doi:10.1039/b508736h
[17] Lekner, J.: Energetics of hydrogen ordering in ice. Physica B 252, 149–159 (1998) · doi:10.1016/S0921-4526(97)00902-2
[18] Lieb, E.H.: The residual entropy of square ice. Phys. Rev. 162, 162–172 (1967) · doi:10.1103/PhysRev.162.162
[19] Lin, K.Y., Tang, D.L.: Residual entropy of two-dimensional ice on a Kagome lattice. J. Phys. A 9, 1101–1107 (1976) · doi:10.1088/0305-4470/9/7/013
[20] Lin, K.Y., Ma, W.J.: Residual entropy of two-dimensional ice on a ruby lattice. J. Phys. A 16, 2515–2519 (1983) · doi:10.1088/0305-4470/16/11/021
[21] Morrison, I., Li, J.C., Jenkins, S., Xantheas, S.S., Payne, M.C.: Total energy studies of the static and dynamical properties of ice Ih and exotic high pressure phases. J. Phys. Chem. B 101, 6146–6150 (1997) · doi:10.1021/jp963277n
[22] Nagle, J.F.: Lattice statistics of hydrogen bonded crystals I. The residual entropy of ice. J. Math. Phys. 7, 1484–1491 (1966) · doi:10.1063/1.1705058
[23] Onsager, L., Dupuis, M.: Rend. Scu. Int. Fis. ”Enrico Fermi” 10, 294 (1960)
[24] Pauling, L.: The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935) · doi:10.1021/ja01315a102
[25] Petrenko, V.F., Whitworth, R.W.: Physics of Ice. Oxford University Press, Oxford (1999)
[26] Sunada, T.: Lecture on topological crystallography. Jpn. J. Math. 7, 1–39 (2012) · Zbl 1257.05171 · doi:10.1007/s11537-012-1144-4
[27] Tokmachev, A.M., Dronskowski, R.: Hydrogen-bond networks in finite ice nanotubes. J. Comput. Chem. 32, 99–105 (2011) · doi:10.1002/jcc.21603
[28] Tokmachev, A.M., Dronskowski, R.: Residual entropy of quasi-one-dimensional water systems. J. Phys. A, Math. Theor. 43, 325001 (2010) · Zbl 1197.82052 · doi:10.1088/1751-8113/43/32/325001
[29] Yoo, S., Kirov, M.V., Xantheas, S.S.: Low-energy networks of the T-cage (H2O)24 cluster and their use in constructing periodic unit cells of the structure I (sI) hydrate lattice. J. Am. Chem. Soc. 131, 7564–7566 (2009) · doi:10.1021/ja9011222
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.