×

Kalman-Bucy filter and SPDEs with growing lower-order coefficients in \(W_{p}^{1}\) spaces without weights. (English) Zbl 1260.60122

Summary: We consider divergence form uniformly parabolic SPDEs with VMO bounded leading coefficients, bounded coefficients in the stochastic part, and possibly growing lower-order coefficients in the deterministic part. We look for solutions which are summable to the \(p\)th power, \(p \geq 2\), with respect to the usual Lebesgue measure along with their first-order derivatives with respect to the spatial variable. Our methods allow us to include Zakai’s equation for the Kalman-Bucy filter into the general filtering theory.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
93E11 Filtering in stochastic control theory

References:

[1] P. Cannarsa and V. Vespri, Generation of analytic semigroups by elliptic operators with unbounded coefficients , SIAM J. Math. Anal. 18 (1987), no. 3, 857-872. · Zbl 0623.47039 · doi:10.1137/0518063
[2] P. Cannarsa and V. Vespri, Existence and uniqueness results for a nonlinear stochastic partial differential equation , in Stochastic Partial Differential Equations and Applications Proceedings (G. Da Prato and L. Tubaro, eds.), Lecture Notes in Math., vol. 1236, Springer Verlag, Berlin, 1987, pp. 1-24. · Zbl 0615.60056 · doi:10.1007/BFb0072880
[3] A. Chojnowska-Michalik and B. Goldys, Generalized symmetric Ornstein-Uhlenbeck semigroups in \(L^p\): Littlewood-Paley-Stein inequalities and domains of generators , J. Funct. Anal. 182 (2001), 243-279. · Zbl 0997.47036 · doi:10.1006/jfan.2000.3722
[4] G. Cupini and S. Fornaro, Maximal regularity in \(L^ p(\bR^N)\) for a class of elliptic operators with unbounded coefficients , Differential Integral Equations 17 (2004), no. 3-4, 259-296. · Zbl 1174.35394
[5] B. Farkas and A. Lunardi, Maximal regularity for Kolmogorov operators in \(L^2\) spaces with respect to invariant measures , J. Math. Pures Appl. 86 (2006), 310-321. · Zbl 1117.35018 · doi:10.1016/j.matpur.2006.06.002
[6] M. Geissert and A. Lunardi, Invariant measures and maximal \(L^2\) regularity for nonautonomous Ornstein-Uhlenbeck equations , J. Lond. Math. Soc. (2) 77 (2008), no. 3, 719-740. · Zbl 1153.47030 · doi:10.1112/jlms/jdn009
[7] I. Gyöngy, Stochastic partial differential equations on Manifolds, I , Potential Analysis 2 (1993), 101-113. · Zbl 0777.60053 · doi:10.1007/BF01049295
[8] I. Gyöngy, Stochastic partial differential equations manifolds II. Nonlinear filtering , Potential Analysis 6 (1997), 39-56. · Zbl 0873.60042 · doi:10.1023/A:1017954105866
[9] I. Gyöngy and N. V. Krylov, On stochastic partial differential equations with unbounded coefficients , Potential Analysis 1 (1992), no. 3, 233-256. · Zbl 0783.60057 · doi:10.1007/BF00269509
[10] N. V. Krylov, Some properties of traces for stochastic and deterministic parabolic weighted Sobolev spaces , Journal of Functional Analysis 183 (2001), no. 1, 1-41. · Zbl 0980.60091 · doi:10.1006/jfan.2000.3728
[11] N. V. Krylov, On divergence form SPDEs with VMO coefficients , SIAM J. Math. Anal. 40 (2009), no. 6, 2262-2285. · Zbl 1195.60091 · doi:10.1137/080726902
[12] N. V. Krylov, On linear elliptic and parabolic equations with growing drift in Sobolev spaces without weights , Problemy Matemtaticheskogo Analiza 40 (2009), 77-90, in Russian; English version in Journal of Mathematical Sciences 159 (2009), no. 1, 75-90, Srpinger. · Zbl 1205.35328 · doi:10.1007/s10958-009-9428-9
[13] N. V. Krylov, Itô’s formula for the \(L_{p}\)-norm of stochastic \(W^{1}_{p}\)-valued processes , Probab. Theory Related Fields 147 (2010), 583-605. · Zbl 1232.60050 · doi:10.1007/s00440-009-0217-7
[14] N. V. Krylov, Filtering equations for partially observable diffusion processes with Lipschitz continuous coefficients , The Oxford Handbook of Nonlinear Filtering, Oxford University Press, 2011, pp. 169-194. · Zbl 1223.93112
[15] N. V. Krylov, On divergence form SPDEs with growing coefficients in \(W^{1}_{2}\) spaces without weights , SIAM J. Math. Anal. 42 (2010), 609-633. · Zbl 1218.60057 · doi:10.1137/090765110
[16] N. V. Krylov, On divergence form second-order PDEs with growing coefficients in \(W^{1}_{p}\) spaces without weights , Progr. Nonlinear Differential Equations Appl. 60 (2011), 389-414. · Zbl 1254.35108
[17] N. V. Krylov, On the Itô-Wentzell formula for distribution-valued processes and related topics , Probab. Theory Related Fields 150 (2011), 295-319. · Zbl 1238.60060 · doi:10.1007/s00440-010-0275-x
[18] N. V. Krylov and E. Priola, Elliptic and parabolic second-order PDEs with growing coefficients , Comm in PDEs 35 (2010), no. 1, 1-22. · Zbl 1195.35160 · doi:10.1080/03605300903424700
[19] N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations , Itogy nauki i tekhniki 14 (1979), 71-146 in Russian; English translation: J. Soviet Math. 16 (1981), no. 4, 1233-1277.
[20] N. V. Krylov and A. Zatezalo, A direct approach to deriving filtering equations for diffusion processes , Applied Mathematics and Optimization 42 (2000), no. 3, 315-332. · Zbl 0974.60021 · doi:10.1007/s002450010015
[21] R. Sh. Liptser, Conditionally Gaussian random processes , Problemy Peredachi Informatsii X (1974), no. 2, 75-94, Russian; English translation: Problems of Information Transmission 10 (1974), no. 2, 151-167. · Zbl 0318.60032
[22] R. Sh. Liptser and A. N. Shiryaev, Statistics of Random Processes , Nauka, Moscow, 1974 in Russian; English translation: Vols. I, II, Springer-Verlag, New York, 1977-1978, 2nd edition 2001. \bid, Mathematical Reviews (MathSciNet):
[23] A. Lunardi, Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \(\bR^n\) , Ann. Sc. Norm. Super Pisa, Ser. IV. 24 (1997), 133-164. · Zbl 0887.35062
[24] A. Lunardi and V. Vespri, Generation of strongly continuous semigroups by elliptic operators with unbounded coefficients in \(L^p(\bR^n)\) , Rend. Istit. Mat. Univ. Trieste 28 (1996), suppl., 251-279 (1997). · Zbl 0899.35027
[25] G. Metafune, J. Prüss, A. Rhandi and R. Schnaubelt, The domain of the Ornstein-Uhlenbeck operator on an \(L^p\)-space with invariant measure , Ann. Sc. Norm. Super. Pisa, Cl. Sci. 5 1 (2002), 471-485. · Zbl 1170.35375
[26] G. Metafune, J. Prüss, A. Rhandi and R. Schnaubelt, \(L^ p\)-regularity for elliptic operators with unbounded coefficients , Adv. Differential Equations 10 (2005), no. 10, 1131-1164. · Zbl 1156.35385
[27] J. Prüss, A. Rhandi and R. Schnaubelt, The domain of elliptic operators on \(L^p(\bR^d)\) with unbounded drift coefficients , Houston J. Math. 32 (2006), no. 2, 563-576. · Zbl 1229.35043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.