×

Free gradient discontinuity and image inpainting. (English. Russian original) Zbl 1260.49025

J. Math. Sci., New York 181, No. 6, 805-819 (2012); translation from Zap. Nauchn. Semin. POMI 390, 92-116 (2011).
From the authors’ abstract/introduction: “In image restoration, the term ‘inpainting’ denotes the process of filling the missing information in subdomains where a given image is damaged: these domains may correspond to scratches in a camera picture, occlusion by objects, blotches in an old movie film, or aging of the canvas and colors in a painting.
In this paper, we face the inpainting problem for a monochromatic image with a variational approach: solving a Dirichlet-type problem for the main part of the Blake-Zisserman functional. So we introduce and study a formulation of the inpainting problem for two-dimensional images that are locally damaged. This formulation is based on the regularization of the solution of a second-order variational problem with Dirichlet boundary condition. A variational approximation algorithm is proposed.”

MSC:

49K10 Optimality conditions for free problems in two or more independent variables
49K20 Optimality conditions for problems involving partial differential equations
49J45 Methods involving semicontinuity and convergence; relaxation
Full Text: DOI

References:

[1] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Univ. Press, Oxford (2000). · Zbl 0957.49001
[2] L. Ambrosio, L. Faina, and R. March, ”Variational approximation of a second order free discontinuity problem in computer vision,” SIAM J. Math. Anal., 32, 1171–1197 (2001). · Zbl 0996.46014 · doi:10.1137/S0036141000368326
[3] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Partial Differential Equations, and the Calculus of Variations, 2nd edition, Springer-Verlag, New York (2006). · Zbl 1110.35001
[4] M. Bertalmío, A. Bertozzi, and G. Sapiro, ”Navier–Stokes, fluid dynamics, and image and video inpainting,” in: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Hawai (2001),
[5] M. Bertalmío, V. Caselles, S. Masnou, and G. Sapiro, ”Inpainting,” in: Encyclopedia of Computer Vision, Springer (2011).
[6] M. Bertalmío, L. Vese, G. Sapiro, and S. Osher, ”Simultaneous structure and texture image inpainting,” IEEE Trans. Image Process., 12, No. 8, 882–889 (2003). · doi:10.1109/TIP.2003.815261
[7] T. Boccellari and F. Tomarelli, ”About well-posedness of optimal segmentation for Blake and Zisserman functional,” Inst. Lombardo Acad. Sci. Lett. Rend. A, 142, 237–266 (2008). · Zbl 1203.94007
[8] T. Boccellari and F. Tomarelli, ”Generic uniqueness of minimizer for Blake and Zisserman functional,” QDD 66, Dipartamento di Matematica, Politecnico di Milano, 1–73 (2010); http://www1.mate.po1imi.it/biblioteca/qddview.php?id=1390&L=i . · Zbl 1334.49113
[9] A. Blake and A. Zisserman, Visual Reconstruction, The MIT Press, Cambridge (1987).
[10] A. Braides, A. Defranceschi, and E. Vitali, ”A compactness result for a second-order variational discrete model,” to appear in ESAIM Math. Model. Numer. Anal. (2011). · Zbl 1272.49095
[11] G. Carboni, M. Carriero, A. Leaci, I. Sgura, and F. Tomarelli, ”Variational segmentation and inpainting via the Blake and Zisserman functional,” to appear.
[12] G. Carboni and I. Sgura, ”Finite difference approximation of 4th order BVPs for detecting discontinuities in digital data,” to appear.
[13] M. Carriero, A. Farina, and I. Sgura, ”Image segmentation in the framework of free discontinuity problems,” in: Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi, Quad. Mat., 14, Dept. Math., Seconda Univ. Napoli, Caserta (2004), pp. 86–133. · Zbl 1063.68685
[14] M. Carriero and A. Leaci, ”Existence theorem for a Dirichlet problem with free discontinuity set,” Nonlinear Anal., 15, No. 7, 661–677 (1990). · Zbl 0713.49003 · doi:10.1016/0362-546X(90)90006-3
[15] M. Carriero, A. Leaci, and F. Tomarelli, ”Free gradient discontinuities,” in: Calculus of Variations, Homogeneization and Continuum Mechanics (Marseille, 1993), World Sci. Publishing, River Edge. New Jersey (1994), pp. 131–147.
[16] M. Carriero, A. Leaci, and F. Tomarelli, ”A second order model in image segmentation: Blake and Zisserman functional,” in: Variational Methods for Discontinuous Structures (Como, 1994), Progr. Nonlinear Differential Equations Appl., 25, Birkhauser, Basel (1996), pp. 57–72. · Zbl 0915.49004
[17] M. Carriero, A. Leaci, and F. Tomarelli, ”Strong minimizers of Blake & Zisserrnan functional,” Ami. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25, No. 1–2, 257–285 (1997). · Zbl 1015.49010
[18] M. Carriero, A. Leaci, and F. Tomarelli, ”Density estimates and further properties of Blake and Zisserman functional,” in: R. Gilbert and P. M. Pardalos (eds.), From Convexity to Nonconvexity, Nonconvex Optim. Appl.. 55, Kluwer Acad. Publ., Dordrecht (2001), pp. 381–392. · Zbl 1043.49003
[19] M. Carriero, A. Leaci, and F. Tomarelli, ”Necessary conditions for extremals of Blake and Zisserman functional,” C. R. Math. Acad. Sci. Paris, 334, No. 4, 343–348 (2002). · Zbl 1001.49023 · doi:10.1016/S1631-073X(02)02231-8
[20] M. Carriero, A. Leaci, and F. Tomarelli, ”Calculus of variations and image segmentation,” J. Physiology, Paris, 97, Nos. 2–3, 343–353 (2003). · Zbl 1265.49015 · doi:10.1016/j.jphysparis.2003.09.008
[21] M. Carriero, A. Leaci, and F. Tomarelli, ”Second order variational problems with free discontinuity and free gradient discontinuity,” in: Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi, Quad. Mat., 14, Dept. Math., Seconda Univ. Napoli, Caserta (2004), pp. 135–186. · Zbl 1115.49002
[22] M. Carriero, A. Leaci, and F. Tomarelli, ”Euler equations for Blake & Zisserman functional,” Calc. Var. Partial Differential Equations, 32, No. 1, 81–110 (2008). · Zbl 1138.49021 · doi:10.1007/s00526-007-0129-2
[23] M. Carriero, A. Leaci, and F. Tomarelli, ”Variational approach to image segrnentation,” Pure Math. Appl., 20, 141–156 (2009). · Zbl 1265.49015
[24] M. Carriero, A. Leaci, and F. Tomarelli, ”Uniform density estimates for Blake & Zisserman functional,” Discrete Contin. Dyn. Syst. Ser. A, 31, No. 4, 1129–1150 (2011). · Zbl 1242.49043 · doi:10.3934/dcds.2011.31.1129
[25] M. Carriero, A. Leaci, and F. Tomarelli, ”A Dirichlet problem with free gradient discontinuity,” Adv. Math. Sci. Appl., 20, No. 1, 107–141 (2010). · Zbl 1220.49001
[26] M. Carriero, A. Leaci, and F. Tomarelli, ”A candidate local minimizer of Blake & Zisserman functional,” J. Math. Pures Appl., 96, 58–87 (2011). · Zbl 1218.49029
[27] M. Carriero, A. Leaci, and F. Tomarelli, ”About Poincare inequalities for functions lacking summability,” Note Mat., 31, No. 1, 67–84 (2011). · Zbl 1250.49016
[28] M. Carriero, A. Leaci, and F. Tomarelli, ”Variational approximation of a second order free discontinuity problem for inpainting,” to appear (2011). · Zbl 1218.49029
[29] M. Carriero, A. Leaci, and F. Tomarelli, ”Segmentation and inpainting of color images,” to appear (2011). · Zbl 1218.49029
[30] V. Caselles, G. Haro, G. Sapiro, and J. Verdera, ”On geometric variational models for inpainting surface holes,” Computer Vision and Image Understanding, 111, 351–373 (2008). · doi:10.1016/j.cviu.2008.01.002
[31] T. F. Chan, S. H. Kang, and J. Shen, ”Euler’s elastica and curvature based inpainting,” SIAM J. Appl. Math., 63, No. 2, 564–592 (2002). · Zbl 1028.68185
[32] T. F. Chan and J. Shen, ”Variational image inpainting,” Comm. Pure Appl. Math., LVIII, 579–619 (2005). · Zbl 1067.68168 · doi:10.1002/cpa.20075
[33] E. De Giorgi, ”Free discontinuity problems in calculus of variations,” in: R. Dautray (ed.), Frontiers in Pure Appl. Math., North-Holland, Amsterdam (1991), pp. 55–61. · Zbl 0758.49002
[34] E. De Giorgi and L. Ambrosio, ”Un nuovo tipo di funzionale del calcolo delle variazioni,” Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 82, 199–210 (1988).
[35] E. De Giorgi, M. Carriero, and A. Leaci, ”Existence theorem for a minimum problem with free discontinuity set,” Arch. Rational Mech. Anal., 108, 195–218 (1989). · Zbl 0682.49002 · doi:10.1007/BF01052971
[36] E. De Giorgi and T. Franzoni, ”Su un tipo di convergenza variazionale,” Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur. (8), 58, No. 6, 842–850 (1975). · Zbl 0339.49005
[37] R. J. Duffin, ”Continuation of biharmonic functions by reflection,” Duke Math. J., 22, 313–324 (1955). · Zbl 0064.35201 · doi:10.1215/S0012-7094-55-02233-X
[38] S. Esedoglu and J. H. Shen, ”Digital inpainting based on the Mumford Shah Euler image rnodel,” European J. Appl. Math., 13, No. 4, 353–370 (2002). · Zbl 1017.94505
[39] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton (1992). · Zbl 0804.28001
[40] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin (1969). · Zbl 0176.00801
[41] F. A. Lops, F. Maddalena, and S. Solimini, ”Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities,” Ann. Inst. H. Poincaré Anal. Non Linéaire, 18, No. 6, 639–673 (2001). · Zbl 1001.49018 · doi:10.1016/S0294-1449(01)00077-4
[42] P. A. Markovich, Applied Partial Differential Equations: a Visual Approach, Springer-Verlag, New York (2007).
[43] J. M. Morel and S. Solimini, Variational Models in Image Segmentation, Progr. Nonlinear Differential Equations Appl., 14, Birkhauser, Basel (1995). · Zbl 0827.68111
[44] D. Mumford and J. Shah, ”Optimal approximation by piecewise smooth functions and associated variational problems,” Comm. Pure Appl. Math., XLII, 577–685 (1989). · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[45] J. Verdera., V. Caselles, M. Bertalmio, and G. Sapiro, ”Inpainting surface holes,” in: International Conference on Image Processing (2003), pp. 903–906.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.