×

Affine normal surfaces with simply-connected smooth locus. (English) Zbl 1260.14057

In the article under review, the authors investigate algebraic and topological conditions which imply that a given normal complex affine surface is smooth or has at worst rational singularities. They establish in particular a kind of global counterpart to Mumford’s topological criterion for smoothness of germs of complex surfaces: a normal complex affine surface is smooth if it is topologically contractible and its smooth locus is simply connected. A an algebro-topological characterization of the affine plane among surfaces with quasi-rational singularities is also given.

MSC:

14L30 Group actions on varieties or schemes (quotients)
14R20 Group actions on affine varieties
Full Text: DOI

References:

[1] Abhyankar S.S.: Quasirational singularities. Am. J. Math. 101(2), 267–300 (1979) · Zbl 0425.14009 · doi:10.2307/2373979
[2] Abyankar S.S., Moh T.T.: Embeddings of the line in the plane. J. Reine Angew. Math. 276, 148–166 (1975) · Zbl 0332.14004
[3] Brieskorn, E.: Rationale singularitaten komplexer Flachen. Invent. Math. 4, 336–358 (1967/1968) · Zbl 0219.14003
[4] Bundagaard, S., Nielsen, J.: On normal subgroups with finite index in F-groups. Mat. Tidsskr. B 32–53 (1951)
[5] Fujita T.: On the topology of noncomplete algebraic surfaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29(3), 503–566 (1982) · Zbl 0513.14018
[6] Gurjar R.V.: Two-dimensional quotients of $${\(\backslash\)mathbb{C}\^n}$$ are isomorphic to $${\(\backslash\)mathbb{C}\^2/\(\backslash\)Gamma}$$ . Transf. Groups 12(1), 117–125 (2007) · Zbl 1122.32015 · doi:10.1007/s00031-005-1129-y
[7] Gurjar R.V., Miyanishi M.: Automorphisms of affine surfaces with $${\(\backslash\)mathbb{A}\^1}$$ -fibrations. Michigan Math. J. 53, 33–55 (2005) · Zbl 1084.14062 · doi:10.1307/mmj/1114021083
[8] Gurjar R.V., Pradeep C.R.: $${\(\backslash\)mathbb{Q}}$$ -homology planes are rational-III. Osaka J. Math. 36, 259–335 (1999) · Zbl 0954.14013
[9] Kaliman Sh., Saveliev N.: $${\(\backslash\)mathbb{C}_+}$$ -actions on contractible threefolds. Michigan Math. J. 52, 619–625 (2004) · Zbl 1067.14067 · doi:10.1307/mmj/1100623416
[10] Kawamata, Y.: On the classification of non-complete algebraic surfaces. In: Algebraic Geometry. Lecture Notes in Mathematics, vol. 732, pp. 215–232. Springer, Berlin (1979) · Zbl 0407.14012
[11] Kobayashi, R.: Uniformization of complex surfaces. In: Kahler metric and moduli spaces. Adv. Stud. Pure Math., vol. 18-II, pp. 313–394. Academic Press, Boston (1990) · Zbl 0755.32024
[12] Koras M., Russell P.: Contractible affine surfaces with a quotient singularity. Transf. Groups 12(2), 293–340 (2007) · Zbl 1124.14050 · doi:10.1007/s00031-006-0036-z
[13] Kraft H.P., Petrie T., Randall J.D.: Quotient varieties. Adv. Math. 74(2), 145–162 (1989) · Zbl 0691.14029 · doi:10.1016/0001-8708(89)90007-8
[14] Miyanishi, M.: Open algebraic surfaces. In: CRM Monograph Series, vol. 12. American Mathematical Society, Providence (2001) · Zbl 0964.14030
[15] Miyanishi, M.: Normal affine subalgebras of a polynomial ring. In: Algebraic and Topological Theories, to the memory of Dr. Takehiko MIYATA, Kinokuniya, pp. 37–51 (1985)
[16] Miyanishi M.: An algebric characterization of the affine plane. J. Math. Kyoto Univ. 15, 169–184 (1975) · Zbl 0304.14021
[17] Miyanishi M., Sugie T.: Homology planes with quotient singularities. J. Math. Kyoto Univ. 31(3), 755–788 (1991) · Zbl 0790.14034
[18] Mumford, D.: The topology of normal singularities of an algebraic surface and a criterion for simplicity. Inst. Hautes Etudes Sci. Publ. Math., vol. 9, pp. 5–22 (1961) · Zbl 0108.16801
[19] Nori M.V.: Zariski’s conjecture and related problems. Ann. Sci. Ecole Norm. Sup. (4) 16(2), 305–344 (1983) · Zbl 0527.14016
[20] Palka, K.: Singular $${\(\backslash\)mathbb{Q}}$$ -homology planes I. arXiv:0806.3110 · Zbl 1236.14054
[21] Zariski O.: Interprétations algébrico-géométriques du quatorzième problème de Hilbert. Bull. Sci. Math. 78, 155–168 (1954) · Zbl 0056.39602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.