×

A robust Bayesian random effects model for nonlinear calibration problems. (English) Zbl 1259.62010

Summary: In the context of a bioassay or an immunoassay, calibration means fitting a curve, usually nonlinear, through the observations collected on a set of samples containing known concentrations of a target substance, and then using the fitted curve and observations collected on samples of interest to predict the concentrations of the target substance in these samples. Recent technological advances have greatly improved our ability to quantify minute amounts of substance from a tiny volume of biological samples. This has in turn led to a need to improve statistical methods for calibration. We focus on developing calibration methods robust to dependent outliers. We introduce a novel normal mixture model with dependent error terms to model the experimental noise. In addition, we propose a reparameterization of the five parameter logistic nonlinear regression model that allows us to better incorporate prior information. We examine the performance of our methods with simulation studies and show that they lead to a substantial increase in performance measured in terms of mean squared error of estimation and a measure of the average prediction accuracy. A real data example from the HIV Vaccine Trials Network Laboratory is used to illustrate the methods.

MSC:

62F15 Bayesian inference
62J02 General nonlinear regression
62P10 Applications of statistics to biology and medical sciences; meta analysis
62F35 Robustness and adaptive procedures (parametric inference)
65C60 Computational problems in statistics (MSC2010)

Software:

drc; bnpmr; JAGS

References:

[1] Baharith, Cytotoxic assays for screening anticancer agents, Statistics in Medicine 25 pp 2323– (2006) · doi:10.1002/sim.2272
[2] Belanger, The effect of variance function estimation on nonlinear calibration inference in immunoassay data, Biometrics 52 pp 158– (1996) · Zbl 0876.62090 · doi:10.2307/2533153
[3] Blei, General, Organic, and Biochemistry Lab Manual (2006)
[4] Bornkamp, Bayesian nonparametric estimation of continuous monotone functions with applications to dose-response analysis, Biometrics 65 pp 198– (2009) · Zbl 1159.62023 · doi:10.1111/j.1541-0420.2008.01060.x
[5] Box, Non-normality and tests on variances, Biometrika 40 pp 318– (1953) · Zbl 0051.10805 · doi:10.1093/biomet/40.3-4.318
[6] Brown, Robust tests for the equality of variances, Journal of the American Statistical Association 69 pp 364– (1974) · Zbl 0291.62063 · doi:10.1080/01621459.1974.10482955
[7] Davidian, Nonlinear Models for Repeated Measurement Data (1995)
[8] Engvall, Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G, Immunochemistry 8 pp 871– (1971) · doi:10.1016/0019-2791(71)90454-X
[9] Faes, Model averaging using fractional polynomials to estimate a safe level of exposure, Risk Analysis 27 pp 111– (2007) · doi:10.1111/j.1539-6924.2006.00863.x
[10] Finney, The principles of biological assay, Supplement to the Journal of the Royal Statistical Society 9 pp 46– (1947) · doi:10.2307/2983571
[11] Finney, Bioassay and the practice of statistical inference, International Statistical Review/Revue Internationale de Statistique 47 pp 1– (1979) · Zbl 0397.92002 · doi:10.2307/1403201
[12] Fomenko, Robust regression for high throughput drug screening, Computer Methods and Programs in Biomedicine 82 pp 31– (2006) · doi:10.1016/j.cmpb.2006.01.008
[13] Fong, Bayesian inference for generalized linear mixed models, Biostatistics 11 pp 397– (2010) · doi:10.1093/biostatistics/kxp053
[14] Gelman, Bayesian analysis of serial dilution assays, Biometrics 60 pp 407– (2004) · Zbl 1125.62120 · doi:10.1111/j.0006-341X.2004.00185.x
[15] Glasbey, Nonlinear regression with autoregressive time series errors, Biometrics 36 pp 135– (1980) · Zbl 0424.62063 · doi:10.2307/2530503
[16] Gottschalk, The five-parameter logistic: A characterization and comparison with the four-parameter logistic, Analytical Biochemistry 343 pp 54– (2005) · doi:10.1016/j.ab.2005.04.035
[17] Grishin, Radar Symposium, 2008 International pp 1– (2008) · doi:10.1109/IRS.2008.4585755
[18] Hamilton, Robust estimates of the ED50, Journal of the American Statistical Association 74 pp 344– (1979)
[19] Heracleous, The Student’s t dynamic linear regression: Re-examining volatility modeling, Advances in Econometrics 20 pp 289– (2006) · Zbl 1190.91156 · doi:10.1016/S0731-9053(05)20011-7
[20] Huber, Robust Statistics (2009) · Zbl 1276.62022 · doi:10.1002/9780470434697
[21] Lange, Robust statistical modeling using the t distribution, Journal of the American Statistical Association 84 pp 881– (1989)
[22] Little, Robust estimation of the mean and covariance matrix from data with missing values, Applied Statistics 37 pp 23– (1988) · Zbl 0647.62040 · doi:10.2307/2347491
[23] MacDonald, Hidden Markov and Other Models for Discrete-Valued Time Series (1997) · Zbl 0868.60036
[24] Miller, Robust estimators for quantal bioassay, Biometrika 67 pp 103– (1980) · Zbl 0421.62023 · doi:10.1093/biomet/67.1.103
[25] Morales, Bayesian model averaging with applications to benchmark dose estimation for arsenic in drinking water, Journal of the American Statistical Association 101 pp 9– (2006) · Zbl 1118.62373 · doi:10.1198/016214505000000961
[26] Motulsky, Detecting outliers when fitting data with nonlinear regression-A new method based on robust nonlinear regression and the false discovery rate, BMC bioinformatics 7 pp 123– (2006) · doi:10.1186/1471-2105-7-123
[27] Normolle, AN algorithm for robust non-linear analysis of radioimmunoassays and other bioassays, Statistics in Medicine 12 pp 2025– (1993) · doi:10.1002/sim.4780122106
[28] Plummer, JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling, Proceedings of the 3rd International Workshop on Distributed Statistical Computing, March pp 20– (2003)
[29] Prentice, A generalization of the probit and logit methods for dose response curves, Biometrics 32 pp 761– (1976) · doi:10.2307/2529262
[30] Qaqish, A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations, Biometrika 90 pp 455– (2003) · Zbl 1034.62042 · doi:10.1093/biomet/90.2.455
[31] Qiu, Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on pp 668– (2011) · doi:10.1109/ISIT.2011.6034215
[32] Racine-Poon, A Bayesian approach to nonlinear calibration problems, Journal of the American Statistical Association 83 pp 650– (1988) · Zbl 0662.62029 · doi:10.1080/01621459.1988.10478644
[33] Rerks-Ngarm, Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand, New England Journal of Medicine 361 pp 2209– (2009) · doi:10.1056/NEJMoa0908492
[34] Richards, A flexible growth function for empirical use, Journal of Experimental Botany 10 pp 290– (1959) · doi:10.1093/jxb/10.2.290
[35] Ritz, Bioassay analysis using R, Journal of Statistical Software 12 pp 1– (2005) · doi:10.18637/jss.v012.i05
[36] Rodbard, A Model for Prediction of Confidence Limits in Radioimmunoassays and Competitive Protein Binding Assays (1970)
[37] Rodbard, Statistical analysis of radioligand assay data, Methods in Enzymology 37 pp 3– (1975) · doi:10.1016/S0076-6879(75)37003-1
[38] Rodbard, Improved curve-fitting, parallelism testing, characterization of sensitivity and specificity, validation, and optimization for radioligand assays, Radioimmunoassay and Related Procedures in Medicine 1 pp 469– (1978)
[39] Seber, Nonlinear Regression. (1988)
[40] Taplin, Biometrics 50 pp 764– (1994)
[41] Tiede, The application of robust calibration to radioimmunoassay, Biometrics 35 pp 567– (1979) · doi:10.2307/2530247
[42] Wang, A four-parameter logistic model for estimating titers of functional multiplexed pneumococcal opsonophagocytic killing assay, Journal of Biopharmaceutical Statistics 18 pp 307– (2008) · doi:10.1080/10543400701697182
[43] Yalow, Immunoassay of endogenous plasma insulin in man, Journal of Clinical Investigation 39 pp 1157– (1960) · doi:10.1172/JCI104130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.