×

Integral representations for the Lagrange polynomials, Shively’s pseudo-Laguerre polynomials, and the generalized Bessel polynomials. (English) Zbl 1259.33013

In 1972, H. M. Srivastava introduced and investigated the general polynomial family \[ S_{n}^{N}(z)=\sum_{k=0}^{[n/N]} {{(-n)_{Nk}}\over {k!}}A_{n,k}z^{k}, \] where \(n\in {\mathbb N}_{0}\), \(N\in {\mathbb N}\), \([k]\) is the greatest integer less or equal to \(k\in \mathbb{R}\), \((\lambda)_{\nu}\) is the Pochhammer symbol and \(A_{n,k}\) is a suitably bounded double sequence of parameters.
In this paper, the authors find multiple integral representations of polynomials which belong to the family \(S_{n}^{N}(z)\). Each of these polynomials can be rewritten as a generalized hypergeometric polynomial, so the obtained integral representations can also be rewritten as the product of two members of the associated family of hypergeometric polynomials. The obtained general results can be applied to some familiar simpler classes of hypergeometric polynomials, such as Lagrange polynomials, Shively’s pseudo-Laguerre polynomials and generalized Bessel polynomials.

MSC:

33C20 Generalized hypergeometric series, \({}_pF_q\)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
31A10 Integral representations, integral operators, integral equations methods in two dimensions
Full Text: DOI

References:

[1] W. A. Al-Salam, ”The Bessel Polynomials,” Duke Math. J. 24, 529–545 (1957). · Zbl 0085.28901 · doi:10.1215/S0012-7094-57-02460-2
[2] S. K. Chatterjea, ”Some Generating Functions,” Duke Math. J. 32, 563–564 (1965). · Zbl 0129.05602 · doi:10.1215/S0012-7094-65-03259-X
[3] A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions, Vol. I (McGraw-Hill Book Company, New York, Toronto and London, 1953). · Zbl 0051.30303
[4] A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions, Vol. III (McGraw-Hill Book Company, New York, Toronto and London, 1953). · Zbl 0051.30303
[5] B. González, J. Matera, and H. M. Srivastava, ”Some q-Generating Functions and Associated Generalized Hypergeometric Polynomials,” Math. Comput. Modelling 34(1/2), 133–175 (2001). · Zbl 0991.33010 · doi:10.1016/S0895-7177(01)00053-X
[6] E. Grosswald, Bessel Polynomials, Lecture Notes in Mathematics, Vol. 698 (Springer-Verlag, Berlin, Heidelberg and New York, 1978).
[7] H. L. Krall and O. Frink, ”A New Class of Orthogonal Polynomials: The Bessel Polynomials,” Trans. Amer. Math. Soc. 65, 100–115 (1949). · Zbl 0031.29701 · doi:10.1090/S0002-9947-1949-0028473-1
[8] S.-D. Lin, Y.-S. Chao, and H. M. Srivastava, ”Some Families of Hypergeometric Polynomials and Associated Integral Representations,” J. Math. Anal. Appl. 294, 399–411 (2004). · Zbl 1048.33012 · doi:10.1016/j.jmaa.2004.01.024
[9] S.-D. Lin, H. M. Srivastava, and P.-Y. Wang, ”Some Families of Hypergeometric Transformations and Generating Relations,” Math. Comput. Modelling 36, 445–459 (2002). · Zbl 1129.90314 · doi:10.1016/S0895-7177(02)00113-9
[10] S.-D. Lin, S.-J. Liu, and H. M. Srivastava, ”Some Families of Hypergeometric au]Polynomials and Associated Multiple Integral Representations,” Integral Transforms Spec. Funct. 22, 403–414 (2011). · Zbl 1258.33007 · doi:10.1080/10652469.2010.515055
[11] S.-D. Lin, S.-J. Liu, H.-C. Lu, and H. M. Srivastava, ”Integral Representations for the Generalized Bedient Polynomials and the Generalized Cesàro Polynomials,” Appl. Math. Comput. 218, 1330–1341 (2011). · Zbl 1242.33022
[12] S.-D. Lin, S.-T. Tu and H. M. Srivastava, ”Some Generating Functions Involving the Stirling Numbers of the Second Kind,” Rend. Sem. Mat. Univ. Politec. Torino 59, 199–224 (2001). · Zbl 1176.33013
[13] S.-J. Liu, C.-J. Chyan, H.-C. Lu, and H. M. Srivastava, ”Multiple Integral Representations for Some Families of Hypergeometric and Other Polynomials,” Math. Comput. Modelling 54, 1420–1427 (2011). · Zbl 1228.33002 · doi:10.1016/j.mcm.2011.04.013
[14] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Die Grundlehren der Mathematischen Wissenenschaften in Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete, Band 52, Third enlarged ed. (Springer-Verlag, Berlin-Heidelberg-New York, 1966).
[15] E. D. Rainville, Special Functions (Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971). · Zbl 0092.06503
[16] H. M. Srivastava, ”A Contour Integral Involving Fox’s H-Function,” Indian J. Math. 14, 1–6 (1972). · Zbl 0226.33016
[17] H. M. Srivastava, ”Some Orthogonal Polynomials Representing the Energy Spectral Functions for a Family of Isotropic Turbulence Fields,” Z. Angew. Math. Mech. 64, 255–257 (1984). · Zbl 0509.33008 · doi:10.1002/zamm.19840640612
[18] H. M. Srivastava, ”Some Integral Representations for the Jacobi and Related Hypergeometric Polynomials,” Rev. Acad. Canaria Cienc. 14, 25–34 (2002). · Zbl 1066.33007
[19] H. M. Srivastava and C. M. Joshi, ”Integral Representation for the Product of a Class of Generalized Hypergeometric Polynomials,” Acad. Roy. Belg. Bull. Cl. Sci. (5) 60, 919–926 (1974). · Zbl 0288.33007
[20] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Ltd., Chichester) (John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984). · Zbl 0535.33001
[21] H. M. Srivastava, M. A. Özarslan, and C. Kaanoglu, ”Some Families of Generating Functions for a Certain Class of Three-Variable Polynomials,” Integral Transforms Spec. Funct. 21, 885–896 (2010). · Zbl 1223.33019 · doi:10.1080/10652469.2010.481439
[22] H. M. Srivastava and R. Panda, ”An Integral Representation for the Product of Two Jacobi Polynomials,” J. London Math. Soc. (2) 12, 419–425 (1976). · Zbl 0304.33015 · doi:10.1112/jlms/s2-12.4.419
[23] G. Szegö, Orthogonal Polynomials, Fourth ed., American Mathematical Society Colloquium Publications, Vol. 23 (American Mathematical Society, Providence, Rhode Island, 1975).
[24] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, Fourth ed. (Cambridge University Press, Cambridge, London and New York, 1927). · JFM 53.0180.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.