×

Equivariant cohomology of \(K\)-contact manifolds. (English) Zbl 1258.53089

Consider a \((2n+1)\)-dimensional contact metric manifold \((M,\alpha, g)\). It is a \(K\)-contact manifold if \(g\) is preserved by the Reeb flow of \(\alpha\) and if there exists an almost complex structure \(J\) on \(ker\;\alpha\) such that \(g(X,Y)=d\alpha(X,JY)\) where \(X,Y\) are sections in \(ker\;\alpha\). The \(K\)-contact manifolds have been studied intensively in the theory of almost contact manifolds (especially in the theory of Sasakian manifolds). The authors study the torus actions on \(K\)-contact manifolds. The torus \(T\) is obtained by the closure of the Reeb flow of \(\alpha\) in the isometry group of \((M,g)\).
The following results are proved or are studied from the point of view of their equivalence with some other results from the theory of \(K\) contact manifolds. Theorem: The \(T\)-action on \(M\) is Cohen-Macaulay. Theorem: The \(\mathfrak{\alpha}\)-action on \((M,\mathcal{F})\) is equivariantly formal. (The set \(\mathcal{F}\) is the orbit foliation of the Reeb flow.) Some other results are obtained, concerning the basic cohomology of \((M,\mathcal{F})\). Theorem: The Reeb flow of \(\alpha\) has at least \(n+1\) closed orbits. Theorem: If the closed Reeb orbits of \(\alpha\) are isolated, then their number is exactly \(n+1\) if and only if \(M\) is a real cohomology sphere.
Finally, the authors use a version of GKM theory in order to compute the equivariant cohomology \(H^*_T(M)\) as a graded \(S(t^*)\) algebra.

MSC:

53D35 Global theory of symplectic and contact manifolds
53D20 Momentum maps; symplectic reduction
57R19 Algebraic topology on manifolds and differential topology
55N25 Homology with local coefficients, equivariant cohomology

References:

[1] Allday, C., Puppe, V.: Cohomological methods in transformation groups. Cambridge Studies in Advanced Mathematics, vol. 32. Cambridge University Press (1993) · Zbl 0799.55001
[2] Audin, M.: Torus actions on symplectic manifolds. Progress in Mathematics, vol. 93, 2nd revised edn. Birkhäuser Verlag, Basel (2004) · Zbl 1062.57040
[3] Banyaga A.: A note on Weinstein’s conjecture. Proc. Am. Math. Soc. 109, 855–858 (1990) · Zbl 0704.58042
[4] Banyaga A., Rukimbira P.: On characteristics of circle invariant presymplectic forms. Proc. Am. Math. Soc. 123, 3901–3906 (1995) · Zbl 0849.58025
[5] Boothby W.M., Wang H.C.: On contact manifolds. Ann. Math. 68(2), 721–734 (1958) · Zbl 0084.39204 · doi:10.2307/1970165
[6] Boyer C.P., Galicki K.: A note on toric contact geometry. J. Geom. Phys. 35, 288–298 (2000) · Zbl 0984.53032 · doi:10.1016/S0393-0440(99)00078-9
[7] Boyer C.P., Galicki K., Nakamaye M.: Einstein metrics on rational homology 7-spheres. Ann. Inst. Fourier (Grenoble) 52, 1569–1584 (2002) · Zbl 1023.53029 · doi:10.5802/aif.1925
[8] Boyer, C.P., Galicki, K.: Sasakian geometry. In: Oxford Mathematical Monographs. Oxford University Press, Oxford (2007) · Zbl 1134.53021
[9] Bredon G.E.: The free part of a torus action and related numerical equalities. Duke Math. J. 41, 843–854 (1974) · Zbl 0294.57024 · doi:10.1215/S0012-7094-74-04184-2
[10] Carrière Y.: Flots riemanniens. Transversal structure of foliations (Toulouse, 1982). Astérisque 116, 31–52 (1984)
[11] Chang T., Skjelbred T.: The topological Schur lemma and related results. Ann. Math. 100(2), 307–321 (1974) · doi:10.2307/1971074
[12] Franz M., Puppe V.: Exact sequences for equivariantly formal spaces. C. R. Math. Acad. Sci. Soc. R. Can. 33, 1–10 (2011) · Zbl 1223.55003
[13] Goertsches O., Töben D.: Torus actions whose equivariant cohomology is Cohen-Macaulay. J. Topol. 3, 819–846 (2010) · Zbl 1208.55005 · doi:10.1112/jtopol/jtq025
[14] Goertsches, O., Töben, D.: Equivariant basic cohomology of Riemannian foliations. Preprint. arXiv:1004.1043 (2010) · Zbl 1208.55005
[15] Goresky M., Kottwitz R., MacPherson R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131, 25–83 (1998) · Zbl 0897.22009 · doi:10.1007/s002220050197
[16] Guillemin V., Holm T.S.: GKM theory for Torus actions with nonisolated fixed points. Int. Math. Res. Notices 40, 2105–2124 (2004) · Zbl 1138.53315 · doi:10.1155/S1073792804132285
[17] Guillemin V., Sternberg S.: Supersymmetry and Equivariant de Rham Theory. Springer, Berlin (1999) · Zbl 0934.55007
[18] Hsiang, W.-Y.: Cohomology theory of topological transformation groups. Ergebnisse der, Mathematik und ihrer Grenzgebiete Band 85. Springer, New York-Heidelberg (1975)
[19] Kirwan F.: Cohomology of quotients in symplectic and algebraic geometry. Mathematical Notes, 31. Princeton University Press, Princeton (1984) · Zbl 0553.14020
[20] Lerman E.: Contact Toric Manifolds. J. Symplectic Geom. 1, 785–828 (2002) · Zbl 1079.53118 · doi:10.4310/JSG.2001.v1.n4.a6
[21] Lerman E.: Contact fiber bundles. J. Geom. Phys. 49, 52–66 (2004) · Zbl 1074.53065 · doi:10.1016/S0393-0440(03)00060-3
[22] Lerman E., Tolman S.: Hamiltonian torus actions on symplectic orbifolds and toric varieties. Trans. Am. Math. Soc. 349, 4201–4230 (1997) · Zbl 0897.58016 · doi:10.1090/S0002-9947-97-01821-7
[23] Luo, S: Cohomology rings of good contact toric manifolds. Preprint. arXiv:1012.2146 (2010)
[24] Molino, P.: Riemannian foliations. with appendices by G. Cairns, Y. Carrière, É. Ghys, E. Salem and V. Sergiescu. Birkhäuser Boston Inc., Boston (1988)
[25] Molino P., Sergiescu V.: Deux remarques sur les flots riemanniens. Manuscr. Math. 51, 145–161 (1985) · Zbl 0585.53026 · doi:10.1007/BF01168350
[26] Myers S.B., Steenrod N.E.: The group of isometries of a Riemannian manifold. Ann. Math. 40(2), 400–416 (1939) · Zbl 0021.06303 · doi:10.2307/1968928
[27] Nozawa, H.: Five dimensional K-contact manifolds of rank 2. Doctoral Thesis, University of Tokyo. arXiv:0907.0208 (2009)
[28] Rukimbira P.: The dimension of leaf closures of K-contact flows. Ann. Global Anal. Geom. 12, 103–108 (1994) · Zbl 0827.53023 · doi:10.1007/BF02108291
[29] Rukimbira P.: Topology and closed characteristics of K-contact manifolds. Bull. Belg. Math. Soc. Simon Stevin 2, 349–356 (1995) · Zbl 0842.58001
[30] Rukimbira P.: On K-contact manifolds with minimal number of closed characteristics. Proc. Am. Math. Soc. 127, 3345–3351 (1999) · Zbl 0924.58079 · doi:10.1090/S0002-9939-99-05217-X
[31] Rukimbira P.: Correction to: ”Spherical rigidity via contact dynamics”. Bull. Belg. Math. Soc. Simon Stevin 8, 147–153 (2001) · Zbl 1037.53025
[32] Saralegui M.: The Euler class for flows of isometries. In: Cordero, L.A. (eds) Research Notes in Mathematics, vol. 131, pp. 220–227. Pitman, Boston (1985) · Zbl 0651.57018
[33] Stiefel E.: Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten. Comm. Math. Helv. 8, 305–353 (1935) · Zbl 0014.41601 · doi:10.1007/BF01199559
[34] Takahashi T.: Deformations of Sasakian structures and its application to the Brieskorn manifolds. Tôhoku Math. J. 30(2), 37–43 (1978) · Zbl 0392.53025 · doi:10.2748/tmj/1178230095
[35] Yamazaki T.: A construction of K-contact manifolds by a fiber join. Tôhoku Math. J. 51(2), 433–446 (1999) · Zbl 0982.53071 · doi:10.2748/tmj/1178224713
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.