×

Hölder mean inequalities for the complete elliptic integrals. (English) Zbl 1258.33011

The authors determine the least constants \(p_1\) and greatest \(p_2\) such that \(M_p(K(x), K(y))\geq K(M_p(x,y))\) or \(M_p(E(x), E(y))\leq E(M_p(x, y))\) hold for all \(p\in [p_1,p_2]\) and all \(x,y\in (0,1)\), where \(M_p\) is the Hölder mean of order \(p\), while \(K\) and \(E\) denote the complete elliptic integrals of the first and second kind, respectively. For \(p\in [0,2]\), the first inequality has been studied by A. Baricz [JIPAM, J. Inequal. Pure Appl. Math. 8, No. 2, Paper No. 40, 9 p. (2007; Zbl 1134.33004)].

MSC:

33E05 Elliptic functions and integrals
26E60 Means

Citations:

Zbl 1134.33004
Full Text: DOI

References:

[1] DOI: 10.1016/j.cam.2004.02.009 · Zbl 1059.33029 · doi:10.1016/j.cam.2004.02.009
[2] DOI: 10.1007/BF02767349 · Zbl 0652.30013 · doi:10.1007/BF02767349
[3] DOI: 10.1137/0521029 · Zbl 0692.33001 · doi:10.1137/0521029
[4] DOI: 10.1137/0523025 · Zbl 0764.33009 · doi:10.1137/0523025
[5] DOI: 10.2307/2154966 · Zbl 0826.33003 · doi:10.2307/2154966
[6] Anderson G. D., Conformal Invariants, Inequalities, and Quasiconformal Maps (1997) · Zbl 0885.30012
[7] DOI: 10.1007/s003659900070 · Zbl 0901.33011 · doi:10.1007/s003659900070
[8] DOI: 10.2140/pjm.2000.192.1 · Zbl 0951.33012 · doi:10.2140/pjm.2000.192.1
[9] DOI: 10.1016/j.jmaa.2007.02.016 · Zbl 1125.26017 · doi:10.1016/j.jmaa.2007.02.016
[10] András S., Expo. Math. 28 pp 357– (2010) · Zbl 1204.33004 · doi:10.1016/j.exmath.2009.12.005
[11] Baricz Á., JIPAM. J. Inequal. Pure Appl. Math. 8 (2007)
[12] DOI: 10.1007/s00209-007-0111-x · Zbl 1125.26022 · doi:10.1007/s00209-007-0111-x
[13] Bowman F., Introduction to Elliptic Functions with Applications (1961) · Zbl 0098.28304
[14] Bullen P. S., Handbook of Means and Their Inequalities (2003) · Zbl 1035.26024 · doi:10.1007/978-94-017-0399-4
[15] Byrd P. F., Handbook of Elliptic Integrals for Engineers and Scientists (1971) · Zbl 0213.16602
[16] DOI: 10.1080/10652460212900 · Zbl 1019.30011 · doi:10.1080/10652460212900
[17] DOI: 10.1080/10652460701210284 · Zbl 1133.42005 · doi:10.1080/10652460701210284
[18] Evans, R. J. Ramanujan’s second notebook: Asymptotic expansions for hypergeometric series and related functions. Ramanujan Revisited: Proceedings of the Ramanujan Centenary Conference. June1–51987. Edited by: Andrews, G. E., Askey, R. A., Berndt, B. C., Ramanathan, K. G. and Rankin, R. A. pp.537–560. Boston, MA: Academic Press. University of Illinois
[19] DOI: 10.1080/10652469408819056 · Zbl 0822.33003 · doi:10.1080/10652469408819056
[20] DOI: 10.1080/17476930903276134 · Zbl 1187.30017 · doi:10.1080/17476930903276134
[21] DOI: 10.1080/17476939708815054 · Zbl 0951.30010 · doi:10.1080/17476939708815054
[22] DOI: 10.1090/S0025-5718-05-01734-5 · Zbl 1084.33001 · doi:10.1090/S0025-5718-05-01734-5
[23] DOI: 10.1080/10652460701722627 · Zbl 1141.26004 · doi:10.1080/10652460701722627
[24] Qiu S.-L., Acta Math. Sinica 43 pp 283– (2000)
[25] DOI: 10.1155/S1025583499000326 · Zbl 0946.30010 · doi:10.1155/S1025583499000326
[26] Saigo M., Proc. Amer. Math. Soc. 110 pp 71– (1990)
[27] DOI: 10.1080/1065246042000210403 · doi:10.1080/1065246042000210403
[28] DOI: 10.1006/jmaa.1994.1137 · Zbl 0802.26009 · doi:10.1006/jmaa.1994.1137
[29] Vuorinen M., Studia Math. 121 pp 221– (1996)
[30] DOI: 10.1080/10652460500422031 · Zbl 1136.35420 · doi:10.1080/10652460500422031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.