×

\(L^{\infty}\) cohomology is intersection cohomology. (English) Zbl 1258.14024

Let \(M\) be a \(C^\infty\) submanifold of \(\mathbb R^n\) endowed by a natural structure of Riemannian manifold, and let \((\Omega^\bullet(M),d)\) be the de Rham complex on \(M\). Suppose that for a differential form \(\omega\in \Omega^p(M)\) there is a constant \(C\) such that for any \(x\in M\) one has \(| \omega(x)| \leq C,\) where \(| \omega(x)|\) denotes the norm of \(\omega(x).\) Then \(\omega\) is called the \(L^{\infty }\) differential \(p\)-form. The real vector space generated by all \(\omega\in\Omega^p(M)\) such that \(\omega\) and \(d \omega\) are both \(L^{\infty }\) differential forms is denoted by \(\Omega^p_{\infty}(M)\). Thus, one obtains an increasing subcomplex \((\Omega^\bullet_{\infty}(M),d)\) of the de Rham complex. The cohomology groups of this cochain complex are called the \(L^{\infty }\)-cohomology groups of \(M;\) they are denoted by \(H^\bullet_\infty(M).\)
Given a subanalytic set \(X,\) the set of its points at which \(X\) is locally a \(C^\infty\) manifold is denoted by \(X_{\text{reg}},\) while the complement \(X\setminus X_{\text{reg}}\) is denoted by \(X_{\text{sing}}\). By definition, an \(\ell\)-dimensional pseudomanifold is a globally subanalytic locally closed set \(X\subset \mathbb R^n\) such that \(X_{\text{reg}}\) is a manifold of dimension \(\ell\) and \(\dim X_{\text{sing}} \leq \ell-2.\) The aim of the paper is to prove the following variant of de Rham theorem for compact subanalyitic \(\ell\)-dimensional pseudomanifolds: \(L^{\infty }\)-cohomology groups of \(X_{\text{reg}}\) and intersection cohomology groups of maximal perversity of \(X\) are naturally isomorphic, that is, \(H^q_{\infty}(X_{\text{reg}}) \cong I^\ell H^q(X)\) for all \(q\geq 0\). The proof is a result of detail analysis of the metric type of subanalytic singular sets; it is based essentially on properties of Lipschitz functions and homemomorphisms, on a version of the classical Poincaré lemma in the context of \(L^{\infty }\) differential forms, on the theory of integration on subanalytic singular simplices, etc. In fact, the author exploits techniques developed in his earlier papers [Ill. J. Math. 49, No. 3, 953–979 (2005; Zbl 1154.14323); J. Symb. Log. 73, No. 2, 439–447 (2008; Zbl 1145.03017)].

MSC:

14F40 de Rham cohomology and algebraic geometry
32C30 Integration on analytic sets and spaces, currents
32S35 Mixed Hodge theory of singular varieties (complex-analytic aspects)

References:

[1] Bierstone, E.; Milman, P., Semianalytic and subanalytic sets, Inst. Hautes Etudes Sci. Publ. Math., 67, 5-42 (1988) · Zbl 0674.32002
[2] Bott, R.; Loring, Tu W., (Differential Forms in Algebraic Topology. Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, vol. 82 (1982), Springer-Verlag: Springer-Verlag New York, Berlin) · Zbl 0496.55001
[3] Brasselet, J.-P.; Goresky, M.; MacPherson, R., Simplicial differential forms with poles, Amer. J. Math., 113, 6, 1019-1052 (1991) · Zbl 0748.55002
[4] Cheeger, J., On the spectral geometry of spaces with cone-like singularities, Proc. Natl. Acad. Sci. U.S.A., 76, 5, 2103-2106 (1979) · Zbl 0411.58003
[5] Cheeger, J., On the Hodge theory of Riemannian pseudomanifolds, (Geometry of the Laplace Operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979). Geometry of the Laplace Operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., vol. XXXVI (1980), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 91-146 · Zbl 0461.58002
[6] J. Cheeger, Hodge theory of complex cones, Astérisque, vols. 101-102, Soc. Math. France, Paris, 1983, 118-134.; J. Cheeger, Hodge theory of complex cones, Astérisque, vols. 101-102, Soc. Math. France, Paris, 1983, 118-134. · Zbl 0583.58004
[7] Cheeger, J., Spectral geometry of singular Riemannian spaces, J. Differential Geom., 18, 575-657 (1983) · Zbl 0529.58034
[8] Cheeger, J.; Goresky, M.; MacPherson, R., \(L^2\)-cohomology and intersection homology of singular algebraic varieties, (Yau, S. T., Seminar in Differential Geometry (1981), Princeton University Press: Princeton University Press Princeton, NJ) · Zbl 0503.14008
[9] M. Coste, An introduction to \(O\); M. Coste, An introduction to \(O\)
[10] Goresky, M.; MacPherson, R., Intersection homology theory, Topology, 19, 2, 135-162 (1980) · Zbl 0448.55004
[11] Goresky, M.; MacPherson, R., Intersection homology II, Invent. Math., 72, 1, 77-129 (1983) · Zbl 0529.55007
[12] Hsiang, W. C.; Pati, V., \(L^2\)-cohomology of normal algebraic surfaces, I. Invent. Math., 81, 3, 395-412 (1985) · Zbl 0627.14016
[13] Kurdyka, K.; Parusiński, A., Quasi-convex decomposition in \(o\)-minimal structures, (Application to the Gradient Conjecture, Singularity Theory and its Applications. Application to the Gradient Conjecture, Singularity Theory and its Applications, Adv. Stud. Pure Math., vol. 43 (2006), Math. Soc. Japan: Math. Soc. Japan Tokyo), 137-177 · Zbl 1132.32004
[14] Lion, J.-M.; Rolin, J.-P., Théorème de préparation pour les fonctions logarithmico-exponentielles, Ann. Inst. Fourier (Grenoble), 47, 3, 859-884 (1997) · Zbl 0873.32004
[15] S. Łojasiewicz, Théorème de Pawłucki. La formule de Stokes sous-analytique, in: Geometry Seminars, 1988-1991 (Bologna, 1988-1991), Univ. Stud. Bologna, Bologna, 1991, pp. 79-82.; S. Łojasiewicz, Théorème de Pawłucki. La formule de Stokes sous-analytique, in: Geometry Seminars, 1988-1991 (Bologna, 1988-1991), Univ. Stud. Bologna, Bologna, 1991, pp. 79-82. · Zbl 0751.32006
[16] Parusiński, A., Lipschitz stratification of subanalytic sets, Ann. Sci. Éc. Norm. Supér. (4), 27, 6, 661-696 (1994) · Zbl 0819.32007
[17] Pawłucki, W., Quasiregular boundary and Stokes’s formula for a subanalytic leaf, (Seminar on Deformations (Łódź/Warsaw, 1982/84). Seminar on Deformations (Łódź/Warsaw, 1982/84), Lecture Notes in Math., vol. 1165 (1985), Springer: Springer Berlin), 235-252 · Zbl 0594.32011
[18] Pawłucki, W., Le théorème de Puiseux pour une application sous-analytique, Bull. Pol. Acad. Sci. Math., 32, 9-10, 555-560 (1984) · Zbl 0574.32010
[19] Saper, L., \(L_2\)-cohomology of Kähler varieties with isolated singularities, J. Differential Geom., 36, 1, 89-161 (1992) · Zbl 0780.14010
[20] Saper, L., \(L_2\)-cohomology and intersection homology of certain algebraic varieties with isolated singularities, Invent. Math., 82, 2, 207-255 (1985) · Zbl 0611.14018
[21] L. Shartser, G. Valette, De Rham theorem for \(L^\infty \); L. Shartser, G. Valette, De Rham theorem for \(L^\infty \) · Zbl 1210.55007
[22] Valette, G., Lipschitz triangulations, Illinois J. Math., 49, 3, 953-979 (2005) · Zbl 1154.14323
[23] Valette, G., On metric types that are definable in an \(o\)-minimal structure, J. Symbolic Logic, 73, 2, 439-447 (2008) · Zbl 1145.03017
[24] van den Dries, L.; Miller, C., Geometric categories and \(o\)-minimal structures, Duke Math. J., 84, 2, 497-540 (1996) · Zbl 0889.03025
[25] van den Dries, L.; Speissegger, P., \(O\)-minimal preparation theorems, (Model Theory and Applications. Model Theory and Applications, Quad. Mat., vol. 11 (2002), Aracne: Aracne Rome), 87-116 · Zbl 1081.03039
[26] Warner, F., Foundations of differentiable manifolds and Lie groups, (Graduate Texts in Mathematics, vol. 94 (1983), Springer-Verlag: Springer-Verlag New York, Berlin), Corrected reprint of the 1971 edition · Zbl 0241.58001
[27] Whitney, H., Geometric Integration Theory (1957), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0083.28204
[28] Youssin, B., \(L^p\) cohomology of cones and horns, J. Differential Geom., 39, 3, 559-603 (1994) · Zbl 0799.53043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.