×

Moduli spaces of curves and Cox rings. (English) Zbl 1258.14014

The object of study is the moduli space \(\mathrm{Mor}(C,X,y)\) of maps from a fixed (smooth projective geometrically irreducible) curve \(C\) to a variety \(X\) such that the cycle of its image is some fixed element \(y\) of \(\mathrm{NS}(X)^\vee\). There is known an explicit lower bound on the dimension of the irreducible components of \(\mathrm{Mor}(C,X,y)\), depending on the dimension of \(X\), the genus of \(C\) and the intersection pairing of \(y\) with \(K_X\). This bound is called the expected dimension of \(\mathrm{Mor}(C,X,y)\). In this context one can ask for the actual dimension of this space and the number of its irreducible components.
In this article, the author answers these questions in a specific situation. There, \(X\) should be a smooth projective geometrically irreducible variety defined over \(\mathbb{Q}\), whose Cox ring is given as a quotient of a polynomial ring \(k[x_1,\ldots,x_n]\) by one equation \(f\). Moreover, \(f\) should be linear with respect to a subset of the variables \(x_i\) in such a way that the coefficients of these variables are pairwise coprime monomials in the remaining variables.
There are more explicit combinatorial restrictions on \(f\) and \(y \in \mathrm{Eff}(X)^\vee\), which have to be fulfilled. But then the main theorem states, that if \(C\) is defined over \(\mathbb{Q}\), then there is an open dense irreducible subset \(\mathrm{Mor}(C,X,y)^\circ\) of \(\mathrm{Mor}(C,X,y)\) that has the expected dimension. This open subset consists of all maps which do not factor through the divisors of sections corresponding to the variables \(x_i\) in the Cox ring.
Since \(C\) and \(X\) are defined over \(\mathbb{Q}\), the theorem can be established by counting the number of points in reductions of open subsets of \(\mathrm{Mor}(C,X,y)\) modulo a prime \(p\). The actual dimension can then be deduced from the asymptocial behaviour of the number of \(\mathbb{F}_{p^r}\)-points for \(r \to \infty\).
Finally, the author gives two classes of examples. On the one hand, the assumptions are fulfilled for so-called intrinsic quadrics, see also [D. Bourqui, Manuscr. Math. 135, No. 1–2, 1–41 (2011; Zbl 1244.14018)]. On the other hand, minimal resolutions of singular del Pezzo surfaces are considered. By the classification found in [U. Derenthal, “Singular del Pezzo surfaces whose universal torsors are hypersurfaces”, arXiv:math.AG/0604194], there are \(20\) such surfaces which fulfill the assumptions for at least one non-zero \(y\). Actually, \(y\) can be chosen arbitrarily for ten of those surfaces. For the remaining ten, only a subcone of \(\mathrm{Eff}(X)^\vee\) satisfies the assumptions of the theorem. The author gives the ratios of the volumes of this subcone and \(\mathrm{Eff}(X)^\vee\).

MSC:

14D22 Fine and coarse moduli spaces
14H10 Families, moduli of curves (algebraic)
14C20 Divisors, linear systems, invertible sheaves

Citations:

Zbl 1244.14018

Software:

Convex

References:

[1] V. Batyrev, Personal communication at the AIM workshop on rational and integer points on higher-dimensional varieties (Palo Alto), 2002.
[2] F. Berchtold and J. Hausen, Cox rings and combinatorics, Trans. Amer. Math. Soc. 359 (2007), 1205-1252. · Zbl 1117.14009 · doi:10.1090/S0002-9947-06-03904-3
[3] D. Bourqui, Fonction zêta des hauteurs des variétés toriques déployées dans le cas fonctionnel, J. Reine Angew. Math. 562 (2003), 171-199. · Zbl 1038.11039 · doi:10.1515/crll.2003.072
[4] —, Comptage de courbes sur le plan projectif éclaté en trois points alignés, Ann. Inst. Fourier (Grenoble) 59 (2009), 1847-1895. · Zbl 1193.11066 · doi:10.5802/aif.2478
[5] —, Produit eulérien motivique et courbes rationnelles sur les variétés toriques, Compositio Math. 145 (2009), 1360-1400. · Zbl 1226.14034 · doi:10.1112/S0010437X09004291
[6] —, La conjecture de Manin géométrique pour une famille de quadriques intrinsèques, Manuscripta Math. 135 (2011), 1-41. · Zbl 1244.14018 · doi:10.1007/s00229-010-0403-z
[7] A.-M. Castravet, Rational families of vector bundles on curves, Internat. J. Math. 15 (2004), 13-45. · Zbl 1092.14041 · doi:10.1142/S0129167X0400220X
[8] I. Coskun and J. Starr, Rational curves on smooth cubic hypersurfaces, Int. Math. Res. Not. 24 (2009), 4626-4641. · Zbl 1200.14051 · doi:10.1093/imrn/rnp102
[9] D. A. Cox, The functor of a smooth toric variety, Tôhoku Math. J. (2) 47 (1995), 251-262. · Zbl 0828.14035 · doi:10.2748/tmj/1178225594
[10] O. Debarre, Higher-dimensional algebraic geometry, Springer-Verlag, New York, 2001. · Zbl 0978.14001
[11] A. J. de Jong and J. Starr, Cubic fourfolds and spaces of rational curves, Illinois J. Math. 48 (2004), 415-450. · Zbl 1081.14007
[12] U. Derenthal, Singular del Pezzo surfaces whose universal torsors are hypersurfaces, preprint, 2006.v1.
[13] M. Franz, Convex: A Maple package for convex geometry, ver. 1.1.3, 2009.
[14] M. A. Guest, The topology of the space of rational curves on a toric variety, Acta Math. 174 (1995), 119-145. · Zbl 0826.14035 · doi:10.1007/BF02392803
[15] J. Harris, M. Roth, and J. Starr, Rational curves on hypersurfaces of low degree, J. Reine Angew. Math. 571 (2004), 73-106. · Zbl 1052.14027 · doi:10.1515/crll.2004.045
[16] —, Curves of small degree on cubic threefolds, Rocky Mountain J. Math. 35 (2005), 761-817. · Zbl 1080.14008 · doi:10.1216/rmjm/1181069707
[17] B. Hassett, Equations of universal torsors and Cox rings, Mathematisches Institut, Georg-August-Universität Göttingen: Seminars Summer Term 2004, pp. 135-143, Universitätsdrucke Göttingen, Göttingen, 2004. · Zbl 1108.14304
[18] B. Kim, Y. Lee, and K. Oh, Rational curves on blowing-ups of projective spaces, Michigan Math. J. 55 (2007), 335-345. · Zbl 1177.14055 · doi:10.1307/mmj/1187646997
[19] B. Kim and R. Pandharipande, The connectedness of the moduli space of maps to homogeneous spaces, Symplectic geometry and mirror symmetry (Seoul, 2000), pp. 187-201, World Scientific, River Edge, NJ, 2001. · Zbl 1076.14517
[20] N. Perrin, Courbes rationnelles sur les variétés homogènes, Ann. Inst. Fourier (Grenoble) 52 (2002), 105-132. · Zbl 1037.14021 · doi:10.5802/aif.1878
[21] J. F. Thomsen, Irreducibility of \(\bar M_{0,n}(G/P,\beta),\) Internat. J. Math. 9 (1998), 367-376. · Zbl 0934.14020 · doi:10.1142/S0129167X98000154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.