×

An element-free Galerkin method for metal forming simulations. (English) Zbl 1257.74181

Summary: Purpose: The purpose of this paper is to investigate the application of the element-free Galerkin (EFG) method to the simulation of metal forming processes and to propose a strategy to deal with volumetric locking problem in this context.
Design/methodology/approach: The \(J_2\) elastoplastic material model, employed in the work, assumes a multiplicative decomposition of the deformation gradient into an elastic and a plastic part and incorporates a non-linear isotropic hardening response. The constitutive model is written in terms of the rotated Kirchhoff stress and the logarithmic strain measure. A Total Lagrangian formulation of the problem is considered in order to improve the computational performance of the proposed algorithm. The imposition of the essential boundary conditions and also of the unilateral contact with friction condition are made by the application of the Augmented Lagrangian method. Here, aspects related to the volumetric locking are investigated and an \(F\)-bar approach is applied.
Findings: The results show that the proposed approach presents no volumetric locking phenomenon when using the mean dilation approach. Moreover, differently from finite element approximations, no hour-glass instabilities in the deformation pattern are observed, avoiding in this way the need to devise additional stabilization procedures in the proposed procedure.
Originality/value: This paper demonstrates the implementation and validation of the mean dilation approach, in the scope of the EFG, which was successful in coping with the volumetric locking phenomena and presented no hour-glass instabilities in the problem cases considered in this work.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
Full Text: DOI

References:

[1] DOI: 10.1002/nme.245 · Zbl 1052.74055 · doi:10.1002/nme.245
[2] DOI: 10.1002/nme.730 · Zbl 1062.74648 · doi:10.1002/nme.730
[3] DOI: 10.1016/S0045-7825(98)00259-X · Zbl 0962.74076 · doi:10.1016/S0045-7825(98)00259-X
[4] DOI: 10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W · Zbl 0953.74077 · doi:10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W
[5] DOI: 10.1002/nme.1620370205 · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[6] DOI: 10.1007/BF00364080 · Zbl 0840.73058 · doi:10.1007/BF00364080
[7] DOI: 10.1002/(SICI)1097-0207(19991030)46:6<925::AID-NME729>3.0.CO;2-Y · Zbl 0967.74079 · doi:10.1002/(SICI)1097-0207(19991030)46:6<925::AID-NME729>3.0.CO;2-Y
[8] DOI: 10.1016/S0045-7825(96)01085-7 · Zbl 0918.73328 · doi:10.1016/S0045-7825(96)01085-7
[9] DOI: 10.1002/nme.1620300602 · Zbl 0714.73035 · doi:10.1002/nme.1620300602
[10] DOI: 10.1002/nme.213 · Zbl 1065.74635 · doi:10.1002/nme.213
[11] DOI: 10.1002/nme.1620150914 · Zbl 0437.73053 · doi:10.1002/nme.1620150914
[12] DOI: 10.1090/S0025-5718-1981-0616367-1 · doi:10.1090/S0025-5718-1981-0616367-1
[13] DOI: 10.1108/02644400110365806 · Zbl 0985.74080 · doi:10.1108/02644400110365806
[14] DOI: 10.1016/S0045-7825(96)01132-2 · Zbl 0883.65088 · doi:10.1016/S0045-7825(96)01132-2
[15] DOI: 10.1016/0045-7825(94)90056-6 · Zbl 0847.73064 · doi:10.1016/0045-7825(94)90056-6
[16] DOI: 10.1016/j.cma.2003.12.019 · Zbl 1060.74665 · doi:10.1016/j.cma.2003.12.019
[17] DOI: 10.1016/0045-7949(84)90212-8 · doi:10.1016/0045-7949(84)90212-8
[18] DOI: 10.1016/j.euromechsol.2005.03.010 · Zbl 1125.74384 · doi:10.1016/j.euromechsol.2005.03.010
[19] DOI: 10.1007/s00466-003-0520-6 · Zbl 1067.74076 · doi:10.1007/s00466-003-0520-6
[20] Rossi, R., Alves, M.K. and Al-Qureshi, H.A. (2008), ”A total Lagrangian framework for simulation of powder compaction process based on a smooth three-surface cap model and a mesh-free method”,International Journal for Numerical Methods in Engineering, available at: http://dx.doi.org/10.1002/nme.2307. · Zbl 1158.74352 · doi:10.1002/nme.2307
[21] DOI: 10.1002/nme.1620330705 · Zbl 0768.73082 · doi:10.1002/nme.1620330705
[22] DOI: 10.1016/0045-7949(92)90540-G · Zbl 0755.73085 · doi:10.1016/0045-7949(92)90540-G
[23] DOI: 10.1002/nme.1620290802 · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[24] DOI: 10.1016/0020-7683(95)00259-6 · Zbl 0929.74102 · doi:10.1016/0020-7683(95)00259-6
[25] DOI: 10.1002/cnm.631 · Zbl 1112.74545 · doi:10.1002/cnm.631
[26] DOI: 10.1016/0045-7825(90)90131-5 · Zbl 0731.73031 · doi:10.1016/0045-7825(90)90131-5
[27] DOI: 10.1016/S0045-7825(02)00252-9 · Zbl 1047.74069 · doi:10.1016/S0045-7825(02)00252-9
[28] DOI: 10.1016/0045-7949(90)90324-U · Zbl 0727.73080 · doi:10.1016/0045-7949(90)90324-U
[29] DOI: 10.1016/S0168-874X(02)00086-0 · Zbl 1100.74648 · doi:10.1016/S0168-874X(02)00086-0
[30] DOI: 10.1007/s004660050296 · Zbl 0947.74080 · doi:10.1007/s004660050296
[31] DOI: 10.1016/S0065-2156(08)70264-3 · Zbl 0475.73026 · doi:10.1016/S0065-2156(08)70264-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.