×

Generalized fiducial inference for normal linear mixed models. (English) Zbl 1257.62075

Summary: While linear mixed modeling methods are foundational concepts introduced in any statistical education, adequate general methods for interval estimation involving models with more than a few variance components are lacking, especially in the unbalanced setting. Generalized fiducial inference provides a possible framework that accommodates this absence of methodology. Under the fabric of generalized fiducial inference along with sequential Monte Carlo methods, we present an approach for interval estimation for both balanced and unbalanced Gaussian linear mixed models. We compare the proposed method to classical and Bayesian results in the literature in a simulation study of two-fold nested models and two-factor crossed designs with an interaction term. The proposed method is found to be competitive or better when evaluated based on frequentist criteria of empirical coverage and average length of confidence intervals for small sample sizes. A MATLAB implementation of the proposed algorithm is available from the authors.

MSC:

62J05 Linear regression; mixed models
62F25 Parametric tolerance and confidence regions
65C05 Monte Carlo methods
62F10 Point estimation

Software:

Matlab; BayesDA

References:

[1] Burch, B. D. (2011). Assessing the performance of normal-based and REML-based confidence intervals for the intraclass correlation coefficient. Comput. Statist. Data Anal. 55 1018-1028. · Zbl 1284.62116
[2] Burch, B. D. and Iyer, H. K. (1997). Exact confidence intervals for a variance ratio (or heritability) in a mixed linear model. Biometrics 53 1318-1333. · Zbl 0911.62028 · doi:10.2307/2533500
[3] Burdick, R. K. and Graybill, F. A. (1992). Confidence Intervals on Variance Components. Statistics : Textbooks and Monographs 127 . Dekker, New York. · Zbl 0755.62055
[4] Casella, G. and Berger, R. L. (2002). Statistical Inference , 2nd ed. Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, CA. · Zbl 0699.62001
[5] Chopin, N. (2002). A sequential particle filter method for static models. Biometrika 89 539-551. · Zbl 1036.62062 · doi:10.1093/biomet/89.3.539
[6] Chopin, N. (2004). Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Statist. 32 2385-2411. · Zbl 1079.65006 · doi:10.1214/009053604000000698
[7] Cisewski, J. and Hannig, J. (2012). Supplement to “Generalized fiducial inference for normal linear mixed models.” . · Zbl 1257.62075
[8] Del Moral, P., Doucet, A. and Jasra, A. (2006). Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 411-436. · Zbl 1105.62034 · doi:10.1111/j.1467-9868.2006.00553.x
[9] Diaconis, P. and Freedman, D. (1986a). On inconsistent Bayes estimates of location. Ann. Statist. 14 68-87. · Zbl 0595.62023 · doi:10.1214/aos/1176349843
[10] Diaconis, P. and Freedman, D. (1986b). On the consistency of Bayes estimates (with discussion). Ann. Statist. 14 1-67. · Zbl 0595.62022 · doi:10.1214/aos/1176349830
[11] Douc, R., Cappé, O. and Moulines, E. (2005). Comparison of resampling schemes for particle filtering. In 4 th International Symposium on Image and Signal Processing and Analysis 64-69.
[12] Douc, R. and Moulines, E. (2008). Limit theorems for weighted samples with applications to sequential Monte Carlo methods. Ann. Statist. 36 2344-2376. · Zbl 1155.62056 · doi:10.1214/07-AOS514
[13] Doucet, A., de Freitas, N. and Gordon, N., eds. (2001). Sequential Monte Carlo Methods in Practice . Springer, New York. · Zbl 0967.00022
[14] E, L., Hannig, J. and Iyer, H. (2008). Fiducial intervals for variance components in an unbalanced two-component normal mixed linear model. J. Amer. Statist. Assoc. 103 854-865. · Zbl 1471.62410 · doi:10.1198/016214508000000229
[15] Elster, C. (2000). Evaluation of measurement uncertainty in the presence of combined random and analogue-to-digital conversion errors. Measurement Science and Technology 11 1359-1363.
[16] Fisher, R. A. (1930). Inverse probability. Math. Proc. Cambridge Philos. Soc. xxvi 528-535. · JFM 56.1083.05
[17] Fisher, R. A. (1933). The concepts of inverse probability and fiducial probability referring to unknown parameters. Proc. R. Soc. Lond. Ser. A 139 343-348. · Zbl 0006.17401 · doi:10.1098/rspa.1933.0021
[18] Fisher, R. A. (1935). The fiducial argument in statistical inference. Annals of Eugenics VI 91-98.
[19] Fraser, D. A. S. (1961a). The fiducial method and invariance. Biometrika 48 261-280. · Zbl 0131.35703 · doi:10.1093/biomet/48.3-4.261
[20] Fraser, D. A. S. (1961b). On fiducial inference. Ann. Math. Statist. 32 661-676. · Zbl 0108.16001 · doi:10.1214/aoms/1177704962
[21] Fraser, D. A. S. (1966). Structural probability and a generalization. Biometrika 53 1-9. · Zbl 0152.17702 · doi:10.1093/biomet/53.1-2.1
[22] Fraser, D. A. S. (1968). The Structure of Inference . Wiley, New York. · Zbl 0164.48703
[23] Frenkel, R. B. and Kirkup, L. (2005). Monte Carlo-based estimation of uncertainty owing to limited resolution of digital instruments. Metrologia 42 L27-L30.
[24] Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1 515-533 (electronic). · Zbl 1331.62139 · doi:10.1214/06-BA117A
[25] Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis , 2nd ed. Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1039.62018
[26] Ghosal, S., Ghosh, J. K. and van der Vaart, A. W. (2000). Convergence rates of posterior distributions. Ann. Statist. 28 500-531. · Zbl 1105.62315 · doi:10.1214/aos/1016218228
[27] GUM (1995). Guide to the Expression of Uncertainty in Measurement . International Organization for Standardization (ISO), Geneva, Switzerland.
[28] Hannig, J. (2009). On generalized fiducial inference. Statist. Sinica 19 491-544. · Zbl 1168.62004
[29] Hannig, J. (2012). Generalized fiducial inference via discretizations. Statist. Sinica . · Zbl 1168.62004
[30] Hannig, J., Iyer, H. and Patterson, P. (2006). Fiducial generalized confidence intervals. J. Amer. Statist. Assoc. 101 254-269. · Zbl 1118.62316 · doi:10.1198/016214505000000736
[31] Hannig, J., Iyer, H. K. and Wang, J. C. M. (2007). Fiducial approach to uncertainty assessment: Accounting for error due to instrument resolution. Metrologia 44 476-483.
[32] Hannig, J. and Lee, T. C. M. (2009). Generalized fiducial inference for wavelet regression. Biometrika 96 847-860. · Zbl 1179.62057 · doi:10.1093/biomet/asp050
[33] Hartley, H. O. and Rao, J. N. K. (1967). Maximum-likelihood estimation for the mixed analysis of variance model. Biometrika 54 93-108. · Zbl 0178.22001 · doi:10.1093/biomet/54.1-2.93
[34] Hernandez, R. P., Burdick, R. K. and Birch, N. J. (1992). Confidence intervals and tests of hypotheses on variance components in an unbalanced two-fold nested design. Biom. J. 34 387-402.
[35] Hernandez, R. P. and Burdick, R. K. (1993). Confidence intervals and tests of hypotheses on variance components in an unbalanced two-factor crossed design with interactions. J. Stat. Comput. Simul. 47 67-77.
[36] Jasra, A., Stephens, D. A. and Holmes, C. C. (2007). On population-based simulation for static inference. Stat. Comput. 17 263-279. · doi:10.1007/s11222-007-9028-9
[37] Jeyaratnam, S. and Graybill, F. A. (1980). Confidence intervals on variance components in three-factor cross-classification models. Technometrics 22 375-380. · Zbl 0468.62068 · doi:10.2307/1268322
[38] Jiang, J. (2007). Linear and Generalized Linear Mixed Models and Their Applications . Springer, New York. · Zbl 1152.62040 · doi:10.1007/978-0-387-47946-0
[39] Khuri, A. I. (1987). Measures of imbalance for unbalanced models. Biom. J. 29 383-396. · Zbl 0665.62059 · doi:10.1002/bimj.4710290402
[40] Khuri, A. I. and Sahai, H. (1985). Variance components analysis: A selective literature survey. Internat. Statist. Rev. 53 279-300. · Zbl 0586.62110 · doi:10.2307/1402893
[41] Kong, A., Liu, J. S. and Wong, W. H. (1994). Sequential imputations and Bayesian missing data problems. J. Amer. Statist. Assoc. 89 278-288. · Zbl 0800.62166 · doi:10.2307/2291224
[42] Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38 963-974. · Zbl 0512.62107 · doi:10.2307/2529876
[43] Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory . Springer, New York. · Zbl 0605.62002
[44] Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 58 619-678. · Zbl 0880.62076
[45] Lee, Y., Nelder, J. A. and Pawitan, Y. (2006). Generalized Linear Models with Random Effects : Unified Analysis via \(H\)-Likelihood. Monographs on Statistics and Applied Probability 106 . Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1110.62092 · doi:10.1201/9781420011340
[46] Lindley, D. V. (1958). Fiducial distributions and Bayes’ theorem. J. R. Stat. Soc. Ser. B Stat. Methodol. 20 102-107. · Zbl 0085.35503
[47] Lira, I. H. and Woger, W. (1997). The evaluation of standard uncertainty in the presence of limited resolution of indicating devices. Measurement Science and Technology 8 441-443.
[48] Liu, J. S. and Chen, R. (1995). Blind deconvolution via sequential imputations. J. Amer. Statist. Assoc. 90 567-576. · Zbl 0826.62062 · doi:10.2307/2291068
[49] Liu, J. S. and Chen, R. (1998). Sequential Monte Carlo methods for dynamic systems. J. Amer. Statist. Assoc. 93 1032-1044. · Zbl 1064.65500 · doi:10.2307/2669847
[50] Liu, J. and West, M. (2001). Combined parameter and state estimation in simulation-based filtering. In Sequential Monte Carlo Methods in Practice 197-223. Springer, New York. · Zbl 1056.93583
[51] Mossman, D. and Berger, J. O. (2001). Intervals for posttest probabilities: A comparison of 5 methods. Medical Decision Making 21 498-507.
[52] O’Connell, A. A. and McCoach, D. B., eds. (2008). Multilevel Modeling of Educational Data . Information Age Publishing, Charlotte, NC.
[53] Schweder, T. and Hjort, N. L. (2002). Confidence and likelihood. Scand. J. Stat. 29 309-332. · Zbl 1017.62026 · doi:10.1111/1467-9469.00285
[54] Searle, S. R., Casella, G. and McCulloch, C. E. (1992). Variance Components . Wiley, New York. · Zbl 0850.62007
[55] Taraldsen, G. (2006). Instrument resolution and measurement accuracy. Metrologia 43 539-544.
[56] Ting, N., Burdick, R. K., Graybill, F. A., Jeyaratnam, S. and Lu, T.-F. C. (1990). Confidence intervals on linear combinations of variance components that are unrestricted in sign. J. Stat. Comput. Simul. 35 135-143. · doi:10.1080/00949659008811240
[57] Tsui, K.-W. and Weerahandi, S. (1989). Generalized \(p\)-values in significance testing of hypotheses in the presence of nuisance parameters. J. Amer. Statist. Assoc. 84 602-607.
[58] van der Vaart, A. W. (2007). Asympotitc Statistics. Statististical and Probabilistic Mathematics 8 . Cambridge Univ. Press, New York.
[59] Wandler, D. V. and Hannig, J. (2012). Generalized fiducial confidence intervals for extremes. Extremes 15 67-87. · Zbl 1232.62105 · doi:10.1007/s10687-011-0127-9
[60] Weerahandi, S. (1993). Generalized confidence intervals. J. Amer. Statist. Assoc. 88 899-905. · Zbl 0785.62029 · doi:10.2307/2290779
[61] Willink, R. (2007). On the uncertainty of the mean of digitized measurements. Metrologia 44 73-81.
[62] Wolfinger, R. D. and Kass, R. E. (2000). Nonconjugate Bayesian analysis of variance component models. Biometrics 56 768-774. · Zbl 1060.62531 · doi:10.1111/j.0006-341X.2000.00768.x
[63] Xie, M., Singh, K. and Strawderman, W. E. (2011). Confidence distributions and a unifying framework for meta-analysis. J. Amer. Statist. Assoc. 106 320-333. · Zbl 1396.62051 · doi:10.1198/jasa.2011.tm09803
[64] Zabell, S. L. (1992). R. A. Fisher and the fiducial argument. Statist. Sci. 7 369-387. · Zbl 0955.62521 · doi:10.1214/ss/1177011233
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.