×

Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction-diffusion model. (English) Zbl 1257.35035

Summary: We study the Hopf bifurcation phenomenon of a one-dimensional Schnakenberg reaction-diffusion model subject to the Neumann boundary condition. Our results reveal that both spatially homogeneous periodic solutions and spatially heterogeneous periodic solution exist. Moreover, we conclude that the spatially homogeneous periodic solutions are locally asymptotically stable and the spatially heterogeneous periodic solutions are unstable. In addition, we give specific examples to illustrate the phenomenon that coincides with our theoretical results.

MSC:

35B32 Bifurcations in context of PDEs
35B10 Periodic solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K58 Semilinear parabolic equations
Full Text: DOI

References:

[1] Turing, A. M., The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London-Series B: Biological Sciences, 237, 37-72 (1952) · Zbl 1403.92034
[2] Stephenson, L. E.; Wollkind, D. J., Weakly nonlinear stability analyses of one-dimensional Turing pattern formation in activator-inhibitor/immobilizer model systems, Journal of Mathematical Biology, 33, 771-815 (1995) · Zbl 0832.92003
[3] Yadav, A.; Milu, S. M.; Horsthemke, W., Turing instability in reaction-subdiffusion systems, Physical Review E, 78, 026116 (2008)
[4] Ricard, M. R.; Mischler, S., Turing instabilities at Hopf bifurcation, Journal of Nonlinear Science, 19, 467-496 (2009) · Zbl 1188.35104
[5] Ricard, M. R.; Mondaini, R. P., Multiscale analysis for diffusion-driven neutrally stable states, Mathematical and Computer Modelling, 50, 1167-1176 (2009) · Zbl 1185.35120
[6] Kaper, H. G.; Wang, S.; Yari, M., Dynamical transitions of Turing patterns, Nonlinearity, 22, 601-626 (2009) · Zbl 1157.92003
[7] Chaplain, M. A.J.; Ganesh, M.; Graham, I. G., Spatio-temporal pattern formation on spherical urfaces: numerical simulation and application to solid tumour growth, Journal of Mathematical Biology, 42, 387-423 (2001) · Zbl 0988.92003
[8] Garzón-Alvarado, D. A.; Galeano, C. H.; Mantilla, J. M., Turing pattern formation for reaction-convection-diffusion systems in fixed domains submitted to toroidal velocity fields, Applied Mathematical Modelling, 35, 4913-4925 (2011) · Zbl 1228.76154
[9] Doelman, A.; Kaper, T. J., Semistrong pulse interactions in a class of coupled reaction-diffusion equations, SIAM Journal on Applied Dynamical Systems, 2, 53-96 (2003) · Zbl 1088.35517
[10] Yari, M., Transitions and heteroclinic cycles in the general Gierer-Meinhardt equation and cardiovascular calcification model, Nonlinear Analysis: Theory, Methods & Applications, 73, 1160-1174 (2010) · Zbl 1197.35136
[11] Iron, D.; Wei, J.; Winter, M., Stability analysis of Turing patterns generated by the Schnakenberg model, Journal of Mathematical Biology, 49, 358-390 (2004) · Zbl 1057.92011
[12] Wei, J.; Winter, M., Stationary multiple spots for reaction-diffusion systems, Journal of Mathematical Biology, 57, 53-89 (2008) · Zbl 1141.92007
[13] Wei, J.; Winter, M., Flow-distributed spikes for Schnakenberg kinetics, Journal of Mathematical Biology, 64, 211-254 (2012) · Zbl 1284.35233
[14] Kolokolnikov, T.; Ward, M. J.; Wei, J., Spot self-replication and dynamics for the Schnakenburg model in a two-dimensional domain, Journal of Nonlinear Science, 19, 1-56 (2009) · Zbl 1178.35039
[15] Li, Y., Steady-state solution for a general Schnakenberg model, Nonlinear Analysis. Real World Applications, 12, 1985-1990 (2011) · Zbl 1231.35069
[16] Zeng, X.; Liu, Z., Nonconstant positive steady states for a ratio-dependent predator-prey system with cross-diffusion, Nonlinear Analysis. Real World Applications, 11, 372-390 (2010) · Zbl 1230.35050
[17] Kusbeyzi, I.; Aybar, O. O.; Hacinliyan, A., Stability and bifurcation in two species predator-prey models, Nonlinear Analysis. Real World Applications, 12, 377-387 (2011) · Zbl 1209.34056
[18] Schnakenberg, J., Simple chemical reaction systems with limit cycle behavior, Journal of Theoretical Biology, 81, 389-400 (1979)
[19] Yi, F.; Wei, J.; Shi, J., Bifurcation and spatio-temporal patterns in a diffusive homogenous predator-prey system, Journal of Differential Equations, 246, 1944-1977 (2009) · Zbl 1203.35030
[20] J. Jin, J. Shi, J. Wei, F. Yi, Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction, Rocky Mountain Journal of Mathematics (in press).; J. Jin, J. Shi, J. Wei, F. Yi, Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction, Rocky Mountain Journal of Mathematics (in press). · Zbl 1288.35051
[21] Du, L.; Wang, M., Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model, Journal of Mathematical Analysis and Applications, 366, 473-485 (2010) · Zbl 1191.35043
[22] Han, W.; Bao, Z., Hopf bifurcation analysis of a reaction-diffusion Sel’kov system, Journal of Mathematical Analysis and Applications, 356, 633-641 (2009) · Zbl 1165.35027
[23] Yi, F.; Liu, J.; Wei, J., Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model, Nonlinear Analysis. Real World Applications, 11, 3770-3781 (2010) · Zbl 1203.35037
[24] Liu, J.; Yi, F.; Wei, J., Mutiple bifurcations and pattern formation in diffusive Geier-Minhardt mode, International Journal of Bifurcation and Chaos, 4, 1007-1025 (2010) · Zbl 1193.35010
[25] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H., Theory and Application of Hopf Bifurcation (1981), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0474.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.