×

Finiteness of endomorphism algebras of CM modular Abelian varieties. (English) Zbl 1256.11037

This intriguing article presents some evidence for a conjecture attributed to Coleman on the endomorphism algebras associated to general abelian varieties, particularly in the setting of certain modular abelian varieties.
To state the general conjecture, let \(A\) be an abelian variety defined over a number field \(L\). We write \(\text{End}_L(A)\) to denote the ring of endomorphisms of \(A\) defined over \(L\), and \(\text{End}_L^0(A) = \text{End}_L(A) \otimes {\mathbb{Q}}\) its associated endomorphism algebra. Given integers \(n, m \geq 1\), it is conjectured that there exist ony finitely many \({\mathbb{Q}}\)-algebras \(M\) such that \(M \approx \text{End}_L^0(A)\) for some abelian variety \(A\) of dimension \(n\) defined over a number field \(L\) of degree \(m\).
Inspired by this conjecture, the author proves the following result. Let \(f\) be a normalized cuspidal newform of weight \(2\), level \(\Gamma_1(N)\), and trivial Nebentype. Let \[ f(z)= \sum_{n \geq 1} a_n(f) q^n, \qquad q = \exp(2 \pi i z) \] denote its Fourier series expansion, and \(L_f = {\mathbb{Q}}(a_v(f))\) the number field obtained by adjoining to \({\mathbb{Q}}\) the coefficients \(a_v(f)\) for any positive density set of primes \(v\). A classical construction associates to \(f\) an abelian variety \(A_f\) defined over \({\mathbb{Q}}\) of dimension \([L_f: {\mathbb{Q}}]\). This abelian variety occurs as a simple quotient over \({\mathbb{Q}}\) of the Jacobian of the modular curve \(X_1(N)\), and its endomorphism algebra \(\text{End}_L^0(A_f)\) is isomorphic to \(L_f\). Anyhow, for each integer \(n \geq 1\), consider the set \(\mathcal{S}_n\) of pairs of endomorphism algebras \[ \left( \text{End}^0_{\overline{\mathbb{Q}}}(A_f), \text{End}^0_{{\mathbb{Q}}}(A_f) \right), \] where \(f\) ranges over the set of normalized newforms of weight \(2\), level \(N\), and trivial Nebentype such that \(\dim(A_f)=n\). It is easy to see from the theory of complex multiplication for elliptic curves that \(\mathcal{S}_1 = 10\). The less straightforward task of determining the finiteness of the sets \(\mathcal{S}_n\) for \(n >1\) is the aim of this article, and of course an interesting test case for Coleman’s conjecture. Some partial results for abelian varieties with quaternionic multiplication have already been established by V. Rotger [“Which quaternion algebras act on a modular abelian variety?”, Math. Res. Lett. 15, No. 2–3, 251–263 (2008; Zbl 1226.11067)], and for surfaces by N. Bruin, E. V. Flynn, J. González and V. Rotger [“On finiteness conjectures for endomorphism algebras of abelian surfaces”, Math. Proc. Camb. Philos. Soc. 141, No. 3, 383–408 (2006; Zbl 1116.14042)].
The partial results presented here pertain to CM newforms \(f\) (see §2 of the paper under review), and the subsets of \(\mathcal{S}_n\) corresponding to such CM forms. In particular, these subsets are shown to be finite for all \(n \geq 1\), with the subset corresponding to \(n = 2\) to be of cardinality \(83\).

MSC:

11G18 Arithmetic aspects of modular and Shimura varieties
14K22 Complex multiplication and abelian varieties

References:

[1] Baker, M. H., González-Jiménez, E., González, J. and Poo- nen, B.: Finiteness results for modular curves of genus at least 2. Amer. J. Math. 127 (2005), no. 6, 1325-1387. · Zbl 1127.11041 · doi:10.1353/ajm.2005.0037
[2] Bayer, P. and González, J.: On the Hasse-Witt invariants of modular curves. Experiment. Math. 6 (1997), no. 1, 57-76. · Zbl 0923.11090 · doi:10.1080/10586458.1997.10504351
[3] Bruin, N., Flynn, E. V., González, J. and Rotger, V.: On finiteness conjectures for endomorphism algebras of abelian surfaces. Math. Proc. Cambridge Philos. Soc. 141 (2006), no. 3, 383-408. · Zbl 1116.14042 · doi:10.1017/S0305004106009613
[4] Carayol, H.: Sur les représentations l-adiques associées aux formes mod- ulaires de Hilbert. Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409-468. · Zbl 0616.10025
[5] Dieulefait, L. V.: Remarks on Serre’s modularity conjecture. Preprint avalaible in http://arxiv.org/abs/math/0603439v11, 2011. · Zbl 1252.11046
[6] Galbraith, S. D.: Rational points on X+( 0 p). Experiment. Math. 8 (1999), no. 4, 311-318. · Zbl 0960.14010 · doi:10.1080/10586458.1999.10504621
[7] González, J.: Isogenies of polyquadratic Q-curves to their Galois conju- gates. Arch. Math. (Basel) 77 (2001), no. 5, 383-390. · Zbl 1020.11040 · doi:10.1007/PL00000508
[8] González, J.: On the j-invariants of the quadratic Q-curves. J. London Math. Soc. (2) 63 (2001), no. 1, 52-68. · Zbl 1010.11028 · doi:10.1112/S0024610700001745
[9] González, J. and Lario, J.-C.: Q-curves and their Manin ideals. Amer. J. Math. 123 (2001), no. 3, 475-503. · Zbl 1035.14009 · doi:10.1353/ajm.2001.0015
[10] González, J. and Lario, J-C.: Modular elliptic directions with complex multiplication (with an application to Gross’s elliptic curves). Comment. Math. Helv. 86 (2011), no. 2, 317-351. · Zbl 1235.11054 · doi:10.4171/CMH/225
[11] Gross, B. H.: Arithmetic on elliptic curves with complex multiplication. Lecture Notes in Mathematics 776. Springer, Berlin, 1980. · Zbl 0433.14032 · doi:10.1007/BFb0096754
[12] Khare, C. and Wintenberger, J.-P.: Serre’s Modularity Conjecture (I) and (II). Invent. Math. 178 (2009), no. 3, 485-504 and 505-586. · Zbl 1304.11041 · doi:10.1007/s00222-009-0205-7
[13] Kisin, M.: Modularity of 2-adic Barsotti-Tate representations. Invent. Math. 178 (2009), no. 3, 587-634. · Zbl 1304.11043 · doi:10.1007/s00222-009-0207-5
[14] Milne, J. S.: On the arithmetic of abelian varieties. Invent. Math. 17 (1972), 177-190. · Zbl 0249.14012 · doi:10.1007/BF01425446
[15] Quer, J.: Fields of definition of building blocks. Math. Comp. 78 (2009), no. 265, 537-554. · Zbl 1204.11091 · doi:10.1090/S0025-5718-08-02132-7
[16] Ribet, K. A.: Galois representations attached to eigenforms with Neben- typus. In Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), 17-51. Lecture Notes in Mathematics 601. Springer, Berlin, 1977. · Zbl 0363.10015
[17] Rotger, V.: Which quaternion algebras act on a modular abelian variety? Math. Res. Lett. 15 (2008), no. 2, 251-263. J. González · Zbl 1226.11067 · doi:10.4310/MRL.2008.v15.n2.a4
[18] Weil, A.: The field of definition of a variety. Amer. J. Math. 78 (1956), 509-524. · Zbl 0072.16001 · doi:10.2307/2372670
[19] Yang, T.: On CM abelian varieties over imaginary quadratic fields. Math. Ann. 329 (2004), no. 1, 87-117. · Zbl 1088.11048 · doi:10.1007/s00208-004-0511-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.