×

CLT of wavelet estimator in semiparametric model with correlated errors. (English) Zbl 1255.93139

Summary: This paper considers the semiparametric regression model \(y_i=x_i\beta +g(t_i)+V_i\) \((1\leq i\leq n)\), where \((x_i,t_i)\) are known design points, \(\beta\) is an unknown slope parameter, \(g(\cdot)\) is an unknown function, the correlated errors \(V_i = \sum\nolimits_{j = - \infty }^\infty {c_j e_{i-j}} \) with \(\sum\nolimits_{j = - \infty }^\infty {| c_j|} < \infty \), and \(e_i\) are negatively associated random variables. Under appropriate conditions, the authors study the asymptotic normality for wavelet estimators of \(\beta\) and \(g(\cdot)\). A simulation study is undertaken to investigate finite sample behavior of the estimators.

MSC:

93E10 Estimation and detection in stochastic control theory
65T60 Numerical methods for wavelets
93C55 Discrete-time control/observation systems
Full Text: DOI

References:

[1] R. Engle, C. Granger, J. Rice, and A. Weiss, Nonparametric estimates of the relation between weather and electricity sales, J. Amer. Statist. Assoc., 1986, 81: 310–320. · doi:10.1080/01621459.1986.10478274
[2] P. Speckman, Kernel smoothing in partial linear models, J. R. Statist. Soc., 1988, B50: 413–436. · Zbl 0671.62045
[3] P. Robinson, Root-n-consistent semiparametric regression, Econometrica, 1988, 56: 931–954. · Zbl 0647.62100 · doi:10.2307/1912705
[4] H. Chen and J. Shiau, Data-driven efficient estimation for a partially linear model, Ann. Statist., 1994, 22: 211–237. · Zbl 0806.62029 · doi:10.1214/aos/1176325366
[5] S. A. Hamilton and Y. K. Truong, Local linear estimation in partly linear models, J. Multiv. Analysis, 1997, 60: 1–19. · Zbl 0883.62041 · doi:10.1006/jmva.1996.1642
[6] W. M. Qian and G. X. Chai, The strong convergence rate of wavelet estimator in partially regression model, Science in China, 1999, 29: 233–240.
[7] W. M. Qian, G. X Chai, and F. Y. Jiang, Wavelet estimate of varience of errors in semiparameteric regression model, Chinese Ann. Math., 2000, 21 341–350. · Zbl 1066.62525
[8] W. Härdle, H. Liang, and J. Gao, Partially Linear Models, Physica-Verlag, Heidelberg, 2000. · Zbl 0968.62006
[9] A. Schick, Estimation of the autocorrelation coefficient in the presence of a regression trend, Statist. Probab. Lett., 1994, 21: 371–380. · Zbl 0805.62044 · doi:10.1016/0167-7152(94)00034-4
[10] J. Beran and S. Ghosh, Root-n-consistent estimation in partial linear models with long-memory errors, Scand. J. Statist., 1998, 25: 345–357. · Zbl 0910.62032 · doi:10.1111/1467-9469.00108
[11] J. T. Gao and V. V. Anh, Semiparametric regression under long-range dependent errors, J. Statist. Plann. Infer., 1999, 80: 37–57. · Zbl 1045.62514 · doi:10.1016/S0378-3758(98)00241-9
[12] G. Aneiros and A. Quintela, Modified cross-validation in semiparametric regression models with dependent errors, Commun. Statist. Theory Meth., 2001, A30: 289–307. · Zbl 1009.62538 · doi:10.1081/STA-100002032
[13] X. Q. Sun, J. H. You, G. M. Chen, and X. Zhou, Convergence rates of estimators in partial linear regression models with MA( error process, Commun. Statist. Theory Meth., 2002, 31: 2251–2273. · Zbl 1075.62550 · doi:10.1081/STA-120017224
[14] J. You, X. Zhou, and G. Chen, Jackknifing in partially linear regression models with serially correlated errors, J. Multivar. Analysis, 2005, 92: 386–404. · Zbl 1059.62046 · doi:10.1016/j.jmva.2003.11.004
[15] A. Antoniadis, G. Gregoire, and I. W. Mckeague, Wavelet methods for cure estimation, J. Amer. Statist. Assoc., 1994, 89: 1340–1352. · Zbl 0815.62018 · doi:10.1080/01621459.1994.10476873
[16] P. Hall and P. Patil, On wavelet methods for estimating smooth function, Bernoulli, 1995, 1: 41–58. · Zbl 0830.62037 · doi:10.2307/3318680
[17] D. L. Donoho, I. M. Johnston, G. Kerkyacharian, and D. Picard, Density estimation by wavelet thresholding, Ann. Statist., 1996, 24: 508–539. · Zbl 0860.62032 · doi:10.1214/aos/1032894451
[18] K. Berkner and R. Wells, Smoothness estimates for soft-threshold denoising via translation-invariant wavelet transforms, Appl. Comput. Harmon. Anal., 2002, 12: 1–24. · Zbl 0995.42023 · doi:10.1006/acha.2001.0366
[19] L. G. Xue, Rates of random weighting approximation of wavelet estimates in semiparameteric regression model, Acta Math. Appl. Sinica, 2003, 26: 11–25. · Zbl 1014.62047
[20] K. Alam and K. M. L. Saxena, Positive dependence in multivariate distributions, Commun. Statist. Theory Meth., 1981, A10: 1183–1196. · Zbl 0471.62045
[21] K. Joag-Dev and F. Proschan, Negative association of random variables with applications, Ann. Statist., 1983, 11: 286–295. · Zbl 0508.62041 · doi:10.1214/aos/1176346079
[22] Q. M. Shao, A comparison theorem on maximum inequalities between negatively associated and independent random variables, J. Theoret. Probab., 2000, 13: 343–356. · Zbl 0971.60015 · doi:10.1023/A:1007849609234
[23] H. Y. Liang and C. Su, Complete convergence for weighted sums of NA sequences, Statist. Probab. Lett., 1999, 45: 85–95. · Zbl 0967.60032 · doi:10.1016/S0167-7152(99)00046-2
[24] H. Y. Liang, Complete convergence for weighted sums of negatively associated random variables, Statist. Probab. Lett., 2000, 48: 317–325. · Zbl 0960.60027 · doi:10.1016/S0167-7152(00)00002-X
[25] J. I. Baek, T. S. Kim, and H. Y. Liang, On the convergence of moving average processes under dependent conditions, Austral. New Zealand J. Statist., 2003, 45: 331–342. · Zbl 1082.60028 · doi:10.1111/1467-842X.00287
[26] H. Y. Liang and J. I. Baek, Weighted sums of negatively associated random variables, Austral. New Zealand J. Statist., 2006, 48(1): 21–31. · Zbl 1156.60307 · doi:10.1111/j.1467-842X.2006.00422.x
[27] G. G. Roussas, Asymptotic normality of random fields of positively or negatively associated processes, J. Multiv. Analysis, 1994, 50: 152–173. · Zbl 0806.60040 · doi:10.1006/jmva.1994.1039
[28] H. Y. Liang and B. Y. Jing, Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences, J. Multiv. Analysis, 2005, 95: 227–245. · Zbl 1070.62022 · doi:10.1016/j.jmva.2004.06.004
[29] H. Y. Liang, V. Mammitzsch, and J. Steinebach, On a semiparametric regression model whose errors form a linear process with negatively associated innovations, Statistics, 2006, 40: 207–226. · Zbl 1098.62044 · doi:10.1080/02331880600688163
[30] H. Y. Liang and Y. Y. Qi, Asymptotic normality of wavelet estimator of regression function under NA assumptions, Bull. Korean Math. Soc., 2007, 44: 247–257. · Zbl 1128.62049 · doi:10.4134/BKMS.2007.44.2.247
[31] G. G. Roussas, On the convergence rate of fixed design regression estimators for negatively associated random variables, Statist. Probab. Lett., 2007, 77: 1214–1224. · Zbl 1331.62194 · doi:10.1016/j.spl.2007.03.007
[32] S. C. Yang, Uniformly asymptotic normality of the regression weighted estimator for negatively associated samples, Statist. Probab. Lett., 2003, 62: 101–110. · Zbl 1101.62326 · doi:10.1016/S0167-7152(02)00427-3
[33] G. G. Walter, Wavelets and Other Orthogonal Systems with Applications, CRC Press, Florida, 1994. · Zbl 0866.42022
[34] T. Gasser and H. Müller, Smoothing Techniques for Curve Estimation, Proceedings of a Workshop Held in Heidelberg, April 2–4, 1979. Edited by Th. Gasser and M. Rosenblatt. Lecture Notes in Mathematics, 757, Springer, Berlin, 1979. · Zbl 0407.00010
[35] G. G. Roussas, Asymptotic normality of the kernel estimate of a probability density function under association, Statist. Probab. Lett., 2000, 50: 1–12. · Zbl 0958.62048 · doi:10.1016/S0167-7152(00)00072-9
[36] Z. W. Cai and G. G. Roussas, Berry-Esseen bounds for smooth estimator of distribution function under association, J. Nonparametric Statist., 1999, 11: 79–106. · Zbl 0980.62040 · doi:10.1080/10485259908832776
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.