×

The numerical approximation of nonlinear Black–Scholes model for exotic path-dependent American options with transaction cost. (English) Zbl 1255.91434

Summary: In this paper, a new second-order exponential time differencing (ETD) method based on the Cox and Matthews approach is developed and applied for pricing American options with transaction cost. The method is seen to be strongly stable and highly efficient for solving the nonlinear Black–Scholes model. Furthermore, it does not incur unwanted oscillations unlike the ETD–Crank–Nicolson method for exotic path-dependent American options. The computational efficiency and reliability of the new method are demonstrated by numerical examples and by comparing it with the existing methods.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
65Y20 Complexity and performance of numerical algorithms

Software:

RODAS
Full Text: DOI

References:

[1] DOI: 10.1017/S0308210500010428 · Zbl 0406.35038 · doi:10.1017/S0308210500010428
[2] Ankudinova J., Nonlinear Models in Mathematical Finance: New Research Trends in Option Pricing pp 243– (2008)
[3] DOI: 10.1086/260062 · Zbl 1092.91524 · doi:10.1086/260062
[4] DOI: 10.1090/S0025-5718-1989-0962207-8 · doi:10.1090/S0025-5718-1989-0962207-8
[5] DOI: 10.1016/j.jedc.2003.04.010 · Zbl 1202.91315 · doi:10.1016/j.jedc.2003.04.010
[6] DOI: 10.1006/jcph.2002.6995 · Zbl 1005.65069 · doi:10.1006/jcph.2002.6995
[7] DOI: 10.1080/00207160.2011.558574 · Zbl 1237.91228 · doi:10.1080/00207160.2011.558574
[8] DOI: 10.1142/S0219024903002183 · Zbl 1070.91024 · doi:10.1142/S0219024903002183
[9] DOI: 10.1142/S0219024908004890 · Zbl 1185.91175 · doi:10.1142/S0219024908004890
[10] DOI: 10.1137/S1064827500382324 · Zbl 1020.91017 · doi:10.1137/S1064827500382324
[11] Fujita H., Handbook of Numerical Analysis 2 pp 789– (1991)
[12] Hairer, E. and Wanner, G. 1991. ”Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems”. Berlin: Springer-Verlag. · Zbl 0729.65051 · doi:10.1007/978-3-662-09947-6
[13] DOI: 10.1137/S0036142901390238 · Zbl 1130.91336 · doi:10.1137/S0036142901390238
[14] DOI: 10.1080/13504860903075670 · Zbl 1229.91339 · doi:10.1080/13504860903075670
[15] Hoggard T., Adv. Futures Opt. Res. 7 pp 21– (1994)
[16] DOI: 10.1007/s10690-007-9047-8 · Zbl 1283.91176 · doi:10.1007/s10690-007-9047-8
[17] DOI: 10.1007/s10690-010-9115-3 · Zbl 1195.91157 · doi:10.1007/s10690-010-9115-3
[18] Ishimura N., Nonlinear Models in Mathematical Finance: New Research Trends in Option Pricing pp 219– (2008)
[19] DOI: 10.1155/JAM.2005.235 · Zbl 1128.91025 · doi:10.1155/JAM.2005.235
[20] DOI: 10.1002/num.1690090202 · Zbl 0768.65059 · doi:10.1002/num.1690090202
[21] DOI: 10.1016/j.jbankfin.2007.04.012 · doi:10.1016/j.jbankfin.2007.04.012
[22] DOI: 10.1002/num.20682 · Zbl 1253.65128 · doi:10.1002/num.20682
[23] DOI: 10.2307/2328113 · doi:10.2307/2328113
[24] DOI: 10.1080/00207160802609829 · Zbl 1163.91411 · doi:10.1080/00207160802609829
[25] Martin, R. H. 1976. ”Nonlinear Operators and Differential Equations in Banach Spaces”. New York: Wiley.
[26] DOI: 10.1137/S00361445024180 · Zbl 1030.65029 · doi:10.1137/S00361445024180
[27] DOI: 10.1007/978-1-4612-5561-1 · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[28] Pooley D. M., J. Comput. Finance 6 pp 25– (2003) · doi:10.21314/JCF.2003.101
[29] DOI: 10.1080/14697680701402941 · Zbl 1140.91409 · doi:10.1080/14697680701402941
[30] DOI: 10.1017/S0956792501004338 · Zbl 1113.91315 · doi:10.1017/S0956792501004338
[31] Ševčovič D., Can. Appl. Math. Q. 15 pp 77– (2007)
[32] DOI: 10.1093/imamat/68.2.167 · Zbl 1047.35068 · doi:10.1093/imamat/68.2.167
[33] DOI: 10.1090/S0025-5718-06-01820-5 · Zbl 1092.35065 · doi:10.1090/S0025-5718-06-01820-5
[34] Thomée, V. 1997. ”Galerkin Finite Element Methods for Parabolic Problems”. Vol. 25, Berlin: Springer Series in Computational Mathematics, Springer-Verlag. · Zbl 0884.65097 · doi:10.1007/978-3-662-03359-3
[35] DOI: 10.1016/j.cam.2006.04.034 · Zbl 1137.91477 · doi:10.1016/j.cam.2006.04.034
[36] DOI: 10.1093/imanum/23.3.465 · Zbl 1047.65074 · doi:10.1093/imanum/23.3.465
[37] DOI: 10.1016/j.amc.2009.02.060 · Zbl 1173.91022 · doi:10.1016/j.amc.2009.02.060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.