×

On tests for multivariate normality and associated simulation studies. (English) Zbl 1255.62163

Summary: We study the empirical size and power of some recently proposed tests for multivariate normality (MVN) and compare them with the existing proposals that performed best in previously published studies. We show that the J.P. Royston extension [Some techniques for assessing multivariate normality based on the Shapiro-Wilk \(W\). Appl. Stat. 32, 121–133 (1983)] to the S.S. Shapiro and M.B. Wilk test [Biometrika 52, 591–611 (1965; Zbl 0134.36501)] is unable to achieve the nominal significance level, and consider a subsequent extension proposed by J.P. Royston [Approximating the Shapiro-Wilk \(W\)-Test for non-normality. Stat. Comput. 2, 117–119 (1992)] to correct this problem, which earlier studies appear to have ignored. A consistent and invariant test proposed by N. Henze and B. Zirkler [Commun. Stat., Theory Methods 19, No. 10, 3595–3617 (1990; Zbl 0738.62068)] is found to have good power properties, particularly for sample sizes of 75 or more, while the approach suggested by J.P. Royston performs effectively at detecting departures from MVN for smaller sample sizes. We also compare our results to those of previous simulation studies, and discuss the challenges associated with generating multivariate data for such investigations.

MSC:

62H15 Hypothesis testing in multivariate analysis
65C60 Computational problems in statistics (MSC2010)

Software:

AS 181
Full Text: DOI

References:

[1] DOI: 10.2307/2283331 · doi:10.2307/2283331
[2] DOI: 10.2307/2346563 · doi:10.2307/2346563
[3] DOI: 10.1080/03610928008827895 · Zbl 0453.62044 · doi:10.1080/03610928008827895
[4] DOI: 10.2307/2684816 · doi:10.2307/2684816
[5] DOI: 10.1080/0094965042000193233 · Zbl 1096.62058 · doi:10.1080/0094965042000193233
[6] Ward, P. J. 1988. ”Goodness of fit tests for multivariate normality”. University of Alabama. Doctoral Dissertation
[7] Horswell, R. L. 1990. ”A Monte Carlo comparison of tests of multivariate normality based on multivariate skewness and kurtosis”. Louisiana State University. Doctoral Dissertation
[8] DOI: 10.1080/00949659208811407 · doi:10.1080/00949659208811407
[9] DOI: 10.1006/jmva.1993.1063 · Zbl 0778.62051 · doi:10.1006/jmva.1993.1063
[10] DOI: 10.1006/jmva.1998.1779 · Zbl 0945.62060 · doi:10.1006/jmva.1998.1779
[11] Mecklin, C. J. 2000. ”A comparison of the power of classical and newer tests of multivariate normality”. University of Northern Colorado. Doctoral Dissertation
[12] Doornik J. A., An Omnibus Test for Univariate and Multivariate Normality (1994)
[13] DOI: 10.1080/03610929008830400 · Zbl 0738.62068 · doi:10.1080/03610929008830400
[14] DOI: 10.1007/BF01891203 · doi:10.1007/BF01891203
[15] DOI: 10.2307/2347291 · Zbl 0536.62043 · doi:10.2307/2347291
[16] Shapiro S. S., Biometrika 52 pp 591– (1965) · Zbl 0134.36501 · doi:10.1093/biomet/52.3-4.591
[17] DOI: 10.1093/biomet/64.2.415 · Zbl 0371.62063 · doi:10.1093/biomet/64.2.415
[18] DOI: 10.1093/biomet/67.2.493 · Zbl 0449.62027 · doi:10.1093/biomet/67.2.493
[19] DOI: 10.1016/0167-7152(87)90019-8 · Zbl 0613.62065 · doi:10.1016/0167-7152(87)90019-8
[20] DOI: 10.1093/biomet/70.3.723 · Zbl 0523.62045 · doi:10.1093/biomet/70.3.723
[21] Young D. M., Texas Journal of Science 47 pp 21– (1995)
[22] DOI: 10.1093/biomet/79.4.850 · Zbl 0850.62428 · doi:10.1093/biomet/79.4.850
[23] DOI: 10.1093/biomet/67.2.455 · Zbl 0455.62044 · doi:10.1093/biomet/67.2.455
[24] DOI: 10.1016/S0167-7152(97)00020-5 · Zbl 0883.62054 · doi:10.1016/S0167-7152(97)00020-5
[25] DOI: 10.1214/aos/1176348670 · Zbl 0757.60012 · doi:10.1214/aos/1176348670
[26] DOI: 10.1016/S0167-9473(98)00093-0 · Zbl 1061.62532 · doi:10.1016/S0167-9473(98)00093-0
[27] DOI: 10.2307/2347973 · Zbl 0503.62037 · doi:10.2307/2347973
[28] DOI: 10.2307/2347986 · doi:10.2307/2347986
[29] DOI: 10.2307/2347303 · doi:10.2307/2347303
[30] DOI: 10.1214/aoms/1177728267 · Zbl 0071.13502 · doi:10.1214/aoms/1177728267
[31] Naczk, K. 2004. ”Assessing tests for multivariate normality”. Ottawa, Ontario: Carleton University. MSc Thesis
[32] DOI: 10.2307/2348109 · doi:10.2307/2348109
[33] DOI: 10.2307/2986146 · doi:10.2307/2986146
[34] DOI: 10.1093/biomet/57.3.519 · Zbl 0214.46302 · doi:10.1093/biomet/57.3.519
[35] DOI: 10.1080/03610928308828452 · doi:10.1080/03610928308828452
[36] Wilson, E. and Hilferty, M. The distribution of chi-square. Proceedings of the National Academy of Sciences, Vol. 17, pp.684–688. · Zbl 0004.36005
[37] DOI: 10.2307/2286939 · Zbl 0354.62019 · doi:10.2307/2286939
[38] D’Agostino R. B., Biometrika 57 pp 679– (1970)
[39] DOI: 10.1007/BF02614082 · Zbl 0705.62053 · doi:10.1007/BF02614082
[40] DOI: 10.1007/BF02613322 · Zbl 0654.62046 · doi:10.1007/BF02613322
[41] Johnson M. E., Multivariate Statistical Simulation (1987) · Zbl 0604.62056 · doi:10.1002/9781118150740
[42] Johnson N. L., Distributions in Statistics: Continuous Multivariate Distributions (1972) · Zbl 0248.62021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.