×

On a set of data for the membrane potential in a neuron. (English) Zbl 1255.60132

Summary: We consider a set of data where the membrane potential in a pyramidal neuron is measured almost continuously in time, under varying experimental conditions. We use nonparametric estimates for the diffusion coefficient and the drift in view to contribute to the discussion which type of diffusion process is suitable to model the membrane potential in a neuron (more exactly: in a particular type of neuron under particular experimental conditions).

MSC:

60J60 Diffusion processes
62M05 Markov processes: estimation; hidden Markov models
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] O. Barndorff-Nielsen, S. Graversen, J. Jacod, N. Shephard, Limit theorems for bipower variation in financial econometrics. Preprint PMA 973, Laboratoire de Probabilités et Modèles Aléatoires, Université Paris VI, 2005.; O. Barndorff-Nielsen, S. Graversen, J. Jacod, N. Shephard, Limit theorems for bipower variation in financial econometrics. Preprint PMA 973, Laboratoire de Probabilités et Modèles Aléatoires, Université Paris VI, 2005. · Zbl 1125.62114
[2] O. Barndorff-Nielsen, S. Graversen, J. Jacod, M. Podolskij, N. Shephard, A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales. From Stochastic Calculus to Mathematical Finance (Shiryaev Festschrift), Springer, 2006, pp. 33-68.; O. Barndorff-Nielsen, S. Graversen, J. Jacod, M. Podolskij, N. Shephard, A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales. From Stochastic Calculus to Mathematical Finance (Shiryaev Festschrift), Springer, 2006, pp. 33-68. · Zbl 1106.60037
[3] Brodda, K.; Höpfner, R., A stochastic model and a functional central limit theorem for information processing in large systems of neurons, J. Math. Biol., 52, 439 (2006) · Zbl 1094.92016
[4] Cox, J.; Ingersoll, J.; Ross, S., A theory of the term structure of interest rates, Econometrica, 53, 385 (1985) · Zbl 1274.91447
[5] Comte, F.; Rozenholc, Y., Adaptive estimation of mean and volatility functions in (auto-)regressive models, Stochast. Proc. Appl., 97, 111 (2002) · Zbl 1064.62046
[6] Ditlevsen, S.; Lánský, P., Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model, Phys. Rev. E, 71, 011907 (2005)
[7] Ditlevsen, S.; Lánský, P., Estimation of the input parameters in the Feller neuronal model, Phys. Rev. E, 73, 061910 (2006) · Zbl 1244.92006
[8] Florens-Zmirou, D., On estimating the diffusion coefficient from discrete observations, J. Appl. Probab., 30, 790 (1993) · Zbl 0796.62070
[9] Giorno, V.; Lánský, P.; Nobile, A.; Ricciardi, L., Diffusion approximation and first-passage-time problem for a model neuron, Biol. Cybern., 58, 387 (1988) · Zbl 0641.92008
[10] Höpfner, R.; Hoffmann, M.; Löcherbach, E., Non-parametric estimation of the death rate in branching diffusions, J. Scand. Statist., 29, 665 (2002) · Zbl 1035.62085
[11] Hoffmann, M., \(L_p\) estimation of the diffusion coefficient, Bernoulli, 5, 447 (1999) · Zbl 0980.62073
[12] Hoffmann, M., On estimating the diffusion coefficient: parametric versus nonparametric, Ann. Inst. H. Poincaré Probab. Statist., 37, 39 (2001) · Zbl 1039.62078
[13] Jacod, J., Non-parametric kernel estimation of the coefficient of a diffusion, Scand, J. Statist., 27, 83 (2000) · Zbl 0938.62085
[14] Kutoyants, Yu., Statistical inference for ergodic diffusion processes (2003), Springer: Springer New York
[15] Lánský, P.; Lánská, V., Diffusion approximation of the neuronal model with synaptic reversal potentials, Biol. Cybern., 56, 19 (1987) · Zbl 0618.92005
[16] Lánský, P.; Sacerdote, L.; Tomassetti, F., On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity, Biol. Cybern., 73, 457 (1995) · Zbl 0831.92002
[17] M. Podolskij, New theory on estimation of integrated volatility. Ph.D. thesis, University of Bochum, 2006.; M. Podolskij, New theory on estimation of integrated volatility. Ph.D. thesis, University of Bochum, 2006. · Zbl 1359.62014
[18] Tsybakov, A., Introduction à l’estimation Non-parametrique (2004), Springer-SMAI: Springer-SMAI New York · Zbl 1029.62034
[19] Shinomoto, S.; Sakai, Y.; Funahashi, S., The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex, Neural Comput., 11, 935 (1999)
[20] H. Tuckwell, Stochastic processes in the neurosciences. CBMS-NSF Conference Series in Applied Mathematics, SIAM 1989.; H. Tuckwell, Stochastic processes in the neurosciences. CBMS-NSF Conference Series in Applied Mathematics, SIAM 1989. · Zbl 0675.92001
[21] Wan, F.; Tuckwell, H., The response of a spatially distributed neuron for white noise current injection, Biol. Cybernet., 33, 39 (1979) · Zbl 0407.60038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.