×

Finite groups with systems of \(\Sigma\)-embedded subgroups. (English) Zbl 1255.20018

Let \(G\) be a finite group and \(\Sigma\): \(G_0\leq G_1\leq\cdots\leq G_n\) a series of subgroups of \(G\). A subgroup \(A\) of \(G\) is said to be \(\Sigma\)-embedded in \(G\) if for each pair \((K,H)\), where \(K\) is a maximal subgroup of \(H\) and \(G_{i-1}\leq K<H\leq G_i\) for some \(i\), either \(A\cap H=A\cap K\) or \(AH=AK\). A subgroup \(A\) of \(G\) is said to be nearly \(m\)-embedded (\(m\)-embedded) in \(G\) if \(G\) has a subgroup (subnormal subgroup) \(T\) and a \(\{1\leq G\}\)-embedded subgroup \(C\) in \(G\) such that \(G=AT\) and \(T\cap A\leq C\leq A\).
Here are some of the major results. If every minimal subgroup of \(G\) is nearly \(m\)-embedded in \(G\), then \(G\) is \(2'\)-supersoluble (Theorem 3.1). If \(p\) is a prime dividing \(|G|\) such that \(\gcd(|G|,p-1)=1\), then \(G\) is \(p\)-nilpotent exactly if either the Sylow \(p\)-subgroups of \(G\) have order \(p\) or there is an integer \(k\) such that \(1\leq k<n\) and every subgroup of \(G\) of order \(p^k\) and every subgroup of order 4 (if \(p^k=2\) and \(P\) is non-Abelian) is \(m\)-embedded in \(G\) (Theorem 4.1). If \(\mathcal F\) is a saturated formation containing all supersoluble groups and \(G\) has a normal subgroup \(E\) such that \(G/E\in\mathcal F\) and every Sylow subgroup \(P\) of \(E\) has the property that either every maximal subgroup of \(P\) or every cyclic subgroup of \(P\) of prime order and of order 4 (if \(P\) is a non-Abelian 2-group) is nearly \(m\)-embedded in \(G\), then \(G\in\mathcal F\) (Theorem 5.1). If \(\mathcal F\) is a saturated formation containing all supersoluble groups and \(G\) has a normal subgroup \(E\) such that \(G/E\in\mathcal F\) and every maximal subgroup of every Sylow subgroup of \(F^*(E)\) is nearly \(m\)-embedded in \(G\), then \(G\in\mathcal F\) (Theorem 5.2). If \(G\) is soluble, then \(G\) is supersoluble if and only if every subnormal subgroup of \(G\) is \(\{1\leq G\}\)-embedded in \(G\) (Theorem 6.2).

MSC:

20D30 Series and lattices of subgroups
20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
20D15 Finite nilpotent groups, \(p\)-groups
20D25 Special subgroups (Frattini, Fitting, etc.)
20D35 Subnormal subgroups of abstract finite groups
Full Text: DOI

References:

[1] Ballester-Bolinches A, Ezquerro L M, Skiba A N. Local embeddings of some families of subgroups of finite groups. Acta Mathematica Sinica, English Series, 2009, 6: 869–882 · Zbl 1190.20014 · doi:10.1007/s10114-009-8623-4
[2] Ballester-Bolinches A, Ezquerro L M, Skiba A N. Subgroups of finite groups with a strong cover-avoidance property. Bull Austral Math Soc, 2009, 79: 499–506 · Zbl 1184.20014 · doi:10.1017/S0004972709000100
[3] Ballester-Bolinches A, Pedraza-Aguilera M C. On minimal subgroups of finite groups. Acta Math Hungar, 1996, 73: 335–342 · Zbl 0930.20021 · doi:10.1007/BF00052909
[4] Ballester-Bolinches A, Wang Y. Finite groups with some C-normal minimal subgroups. J Pure Appl Algebra, 2000, 153: 121–127 · Zbl 0967.20009 · doi:10.1016/S0022-4049(99)00165-6
[5] Ballester-Bolinches A, Wang Y, Guo X. c-supplemented subgroups of finite groups. Glasgow Math J, 2000, 42: 383–389 · Zbl 0968.20009 · doi:10.1017/S001708950003007X
[6] Buckley J. Finite groups whose minimal subgroups are normal. Math Z, 1970, 15: 15–17 · Zbl 0202.02303 · doi:10.1007/BF01110184
[7] Doerk K, Hawkes T. Finite Soluble Groups. Berlin-New York: Walter de Gruyter, 1992 · Zbl 0753.20001
[8] Fan Y, Guo X, Shum K P. Remarks on two generalizations of normality of subgroups. Chinese J Contemp Math, 2006, 27: 1–8 · Zbl 1109.20017
[9] Fan Y, Guo X, Shum K P. Remarks on two generalizations of normality of subgroups (in Chinese). Chinese Ann Math Ser A, 2006, 27: 169–176 · Zbl 1104.53035 · doi:10.1007/s11401-005-0529-6
[10] Guo W. The Theory of Classes of Groups. Beijing-New York-Dordrecht-Boston-London: Science Press/Kluwer Academic Publishers, 2000 · Zbl 1005.20016
[11] Guo X, Guo P, Shum K P. On semi cover-avoiding subgroups of finite groups. J Pure Appl Algebra, 2007, 209: 151–158 · Zbl 1117.20013 · doi:10.1016/j.jpaa.2006.05.027
[12] Guo X, Shum K P. Cover-avoidance properties and the structure of finite groups. J Pure Appl Algebra, 2003, 181: 297–308 · Zbl 1028.20014 · doi:10.1016/S0022-4049(02)00327-4
[13] Guo X, Shum K P. On c-normal maximal and minimal subgroups of Sylow p-subgroups. Arch Math, 2003, 80: 561–569 · Zbl 1050.20010 · doi:10.1007/s00013-003-0810-4
[14] Guo X, Shum K P. On p-nilpotency of finite groups with some subgroups c-supplemented. Algebra Colloq, 2003, 10: 250–266 · Zbl 1036.20019
[15] Guo W, Shum K P, Skiba A N. Criterions of supersolubility for products of supersoluble groups. Publ Math Debrecen, 2006, 68: 433–449 · Zbl 1102.20022
[16] Guo X, Wang J, Shum K P. On semi-cover-avoiding maximal subgroups and solvability of finite groups. Comm Algebra, 2006, 34: 3235–3244 · Zbl 1106.20013 · doi:10.1080/00927870600778381
[17] Hall P. Complemented groups. J London Math Soc, 1937, 12: 201–204 · Zbl 0016.39301 · doi:10.1112/jlms/s1-12.2.201
[18] Huppert B. Endliche Gruppen I. Berlin-Heidelberg-New York: Springer-Verlag, 1967 · Zbl 0217.07201
[19] Huppert B, Blackburn N. Finite Groups III. Berlin-New York: Springer-Verlag, 1982 · Zbl 0514.20002
[20] Li D, Guo X. The influence of c-normality of subgroups on the structure of finite groups II. Comm Algebra, 1998, 26: 1913–1922 · Zbl 0906.20012 · doi:10.1080/00927879808826248
[21] Liu X, Ding N. On chief factors of finite groups. J Pure Appl Algebra, 2007, 210: 789–796 · Zbl 1124.20011 · doi:10.1016/j.jpaa.2006.11.008
[22] Ore O. Contributions in the theory of groups of finite order. Duke Math J, 1939, 5: 431–460 · JFM 65.0065.06 · doi:10.1215/S0012-7094-39-00537-5
[23] Petrillo J. CAP-subgroups in a direct product of finite groups. J Algebra, 2006, 306: 432–438 · Zbl 1113.20021 · doi:10.1016/j.jalgebra.2006.09.002
[24] Ramadan M. Influence of normality on maximal subgroups of Sylow subgroups of a finite group. Acta Math Hungar, 1992, 59: 107–110 · Zbl 0802.20019 · doi:10.1007/BF00052096
[25] Robinson D J S. A Course in the Theory of Groups. New York: Springer, 1982 · Zbl 0483.20001
[26] Shemetkov L A. Formations of Finite Groups. Moscow: Nauka, 1978 · Zbl 0496.20014
[27] Shemetkov L A, Skiba A N. The generalized X-hypercentre of a finite group. Proc F Skorina Gomel State University, 2008, 6: 128–130
[28] Srinivasan S. Two sufficient conditions for supersolvability of finite groups. Israel J Math, 1980, 35: 210–214 · Zbl 0437.20012 · doi:10.1007/BF02761191
[29] Stonehewer S E. Permutable subgroups in infinite groups. Math Z, 1972, 125: 1–16 · Zbl 0219.20021 · doi:10.1007/BF01111111
[30] Wang L, Chen G. Some properties of finite groups with some (semi-p-)cover-avoiding subgroups. J Pure Appl Algebra, 2009, 213: 686–689 · Zbl 1167.20010 · doi:10.1016/j.jpaa.2008.09.007
[31] Wang Y. c-normality of groups and its properties. J Algebra, 1996, 180: 954–965 · Zbl 0847.20010 · doi:10.1006/jabr.1996.0103
[32] Wang Y. Finite groups with some subgroups of Sylow subgroups c-supplemented. J Algebra, 2000, 224: 464–478 · Zbl 0953.20010
[33] Wei H. On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups. Comm Algebra, 2001, 29: 2193–2200 · Zbl 0990.20012 · doi:10.1081/AGB-100002178
[34] Wei H, Wang Y, Li Y. On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups II. Comm Algebra, 2003, 31: 4807–4816 · Zbl 1050.20011 · doi:10.1081/AGB-120023133
[35] Wielandt H. Subnormal subgroups and permutation groups. Lectures given at the Ohio State University, Columbus, Ohio, 1971
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.