×

Magnetically-induced buckling of a whirling conducting rod with applications to electrodynamic space tethers. (English) Zbl 1254.74074

Summary: We study the effect of a magnetic field on the behaviour of a slender conducting elastic structure, motivated by stability problems of electrodynamic space tethers. Both static (buckling) and dynamic (whirling) instability are considered and we also compute post-buckling configurations. The equations used are the geometrically exact Kirchhoff equations. Magnetic buckling of a welded rod is found to be described by a surprisingly degenerate bifurcation, which is unfolded when both transverse anisotropy of the rod and angular velocity are considered. By solving the linearised equations about the (quasi-) stationary solutions, we find various secondary instabilities. Our results are relevant for current designs of electrodynamic space tethers and potentially for future applications in nano- and molecular wires.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74G60 Bifurcation and buckling
78A30 Electro- and magnetostatics
34B15 Nonlinear boundary value problems for ordinary differential equations

Software:

AUTO

References:

[1] Ahedo, E., Sanmartín, J.R.: Analysis of bare-tether systems for deorbiting low-earth-orbit satellites. J. Spacecraft Rockets 39(2), 198–205 (2002) · doi:10.2514/2.3820
[2] Antman, S.S.: Nonlinear Problems of Elasticity. Springer, Berlin (1995) · Zbl 0820.73002
[3] Beletsky, V.V., Levin, E.M.: Dynamics of Space Tether Systems. Advances in the Astronautical Sciences, vol. 83. American Astronautical Society, San Diego (1993)
[4] Coleman, B.D., Dill, E.H., Lembo, M., Lu, Z., Tobias, I.: On the dynamics of rods in the theory of Kirchhoff and Clebsch. Arch. Ration. Mech. Anal. 121, 339–359 (1993) · Zbl 0784.73044 · doi:10.1007/BF00375625
[5] Cosmo, M.L., Lorenzini, E.C.: Tethers in Space Handbook, 3rd edn. Smithsonian Astrophisical Observatory (NASA Marshall Space Flight Center, Huntsville, Alabama) (1997)
[6] Doedel, E.J., Champneys, A.R., Fairgrieve, T.R., Kuznetsov, Yu.A., Sandstede, B., Wang, X.J.,: AUTO97: Continuation and bifurcation software for ordinary differential equations (1997). Available from http://indy.cs.concordia.ca/auto
[7] Fraser, W.B., Stump, D.M.: Yarn twist in the ring-spinning balloon. Proc. R. Soc. Lond. A 454, 707–723 (1998) · Zbl 0915.73026 · doi:10.1098/rspa.1998.0182
[8] Goriely, A., Tabor, M.: Nonlinear dynamics of filaments I. Dynamical instabilities. Physica D 105, 20–44 (1997) · Zbl 0962.74513 · doi:10.1016/S0167-2789(96)00290-4
[9] Healey, T.J.: Large rotating states of a conducting elastic wire in a magnetic field: subtle symmetry and multiparameter bifurcation. J. Elast. 24, 211–227 (1990) · Zbl 0733.73032 · doi:10.1007/BF00115559
[10] Hughes, P.C.: Spacecraft Attitude Dynamics. Dover, New York (1986)
[11] Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975) · Zbl 0997.78500
[12] Krupa, M., Poth, W., Schagerl, M., Steindl, A., Steiner, W., Troger, H., Wiedermann, G.: Modelling, dynamics and control of tethered satellite systems. Nonlinear Dyn. 43, 73–96 (2006) · Zbl 1138.70349 · doi:10.1007/s11071-006-0752-z
[13] Maiya, B.G., Ramasarma, T.: DNA, a molecular wire or not–the debate continues. Curr. Sci. 80(12), 1523–1530 (2001)
[14] Scheibel, T., Parthasarathy, R., Sawicki, G., Lin, X.M., Jaeger, H., Lindquist, S.L.: Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Sci. USA 100, 4527–4532 (2003) · doi:10.1073/pnas.0431081100
[15] Sinden, D., van der Heijden, G.H.M.: Integrability of a conducting elastic rod in a magnetic field. J. Phys. A: Math. Theor. 41, 045207 (2008) (16 pp) · Zbl 1189.74078 · doi:10.1088/1751-8113/41/4/045207
[16] Valverde, J., Escalona, J.L., Mayo, J., Domínguez, J.: Dynamic analysis of a light structure in outer space: short electrodynamic tether. Multibody Syst. Dyn. 10(1), 125–146 (2003) · Zbl 1024.78513 · doi:10.1023/A:1024527924176
[17] Valverde, J., Escalona, J.L., Freire, E., Domínguez, J.: Stability and bifurcation analysis of a geometrically nonlinear orthotropic Jeffcott model with internal damping. Nonlinear Dyn. 42(2), 137–163 (2005) · Zbl 1142.74344 · doi:10.1007/s11071-005-2365-3
[18] Valverde, J., Escalona, J.L., Domínguez, J., Champneys, A.R.: Stability and bifurcation analysis of a spinning space tether. J. Nonlinear Sci. 16(5), 507–542 (2006) · Zbl 1149.70316 · doi:10.1007/s00332-005-0700-y
[19] Wolfe, P.: Equilibrium states of an elastic conductor in a magnetic field: a paradigm of bifurcation theory. Trans. Am. Math. Soc. 278, 377–387 (1983) · Zbl 0519.73093 · doi:10.1090/S0002-9947-1983-0697082-3
[20] Wolfe, P.: Rotating states of an elastic conductor. In: Lightbourne, J., Rankin, S. (eds.) Physical Mathematics and Nonlinear Partial Differential Equations. Dekker, New York (1985) · Zbl 0565.73093
[21] Wolfe, P.: Bifurcation theory of an elastic conducting rod in a magnetic field. Quart. J. Mech. Appl. Math. 41(2), 265–279 (1988) · Zbl 0673.73032 · doi:10.1093/qjmam/41.2.265
[22] Woodson, H.H., Melcher, J.R.: Electromechanical Dynamics, Part II: Fields, Forces, and Motion. Wiley, New York (1968)
[23] Ziegler, S.W., Cartmell, M.P.: Using motorized tethers for payload orbital transfer. J. Spacecraft Rockets 38, 904–913 (2001) · doi:10.2514/2.3762
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.