×

Periodic orbits and bifurcations in the Sitnikov four-body problem. (English) Zbl 1254.70029

Summary: We study the existence, linear stability and bifurcations of what we call the Sitnikov family of straight line periodic orbits in the case of the restricted four-body problem, where the three equal mass primary bodies are rotating on a circle and the fourth (small body) is moving in the direction vertical to the center mass of the other three. In contrast to the restricted three-body Sitnikov problem, where the Sitnikov family has infinitely many stability intervals (hence infinitely many Sitnikov critical orbits), as the “family parameter” \(\dot z_0\) varies within a finite interval (while \(z_0\) tends to infinity), in the four-body problem this family has only one stability interval and only twelve 3-dimensional (3D) families of symmetric periodic orbits exist which bifurcate from twelve corresponding critical Sitnikov periodic orbits. We also calculate the evolution of the characteristic curves of these 3D branch-families and determine their stability. More importantly, we study the phase space dynamics in the vicinity of these orbits in two ways: First, we use the SALI index to investigate the extent of bounded motion of the small particle off the \(z\)-axis along its interval of stable Sitnikov orbits, and secondly, through suitably chosen Poincaré maps, we chart the motion near one of the 3D families of plane-symmetric periodic orbits. Our study reveals in both cases a fascinating structure of ordered motion surrounded by “sticky” and chaotic orbits as well as orbits which rapidly escape to infinity.

MSC:

70F10 \(n\)-body problems
70K50 Bifurcations and instability for nonlinear problems in mechanics
70K42 Equilibria and periodic trajectories for nonlinear problems in mechanics
Full Text: DOI

References:

[1] Belbruno E., Llibre J. and Ollé M. (1994). On the families of periodic orbits which bifurcate from the circular Sitnikov motions. Celest. Mech. Dyn. Astr. 60: 99 · Zbl 0818.70011 · doi:10.1007/BF00693095
[2] Bennett A. (1965). Characteristic exponents of the five equilibrium solutions in the elliptically restricted problem. Icarus 4: 177 · doi:10.1016/0019-1035(65)90060-6
[3] Corbera M. and Llibre J. (2000). Periodic orbits of the Sitnikov problem via a Poincaré map. Celest. Mech. Dyn. Astr. 77: 273 · Zbl 0986.70010 · doi:10.1023/A:1011117003713
[4] Danby J.M.A. (1964). Stability of the triangular points in the elliptic restricted problem of three bodies. Astron. J. 69: 165 · Zbl 0117.18101 · doi:10.1086/109254
[5] Dvorak R. (1993). Numerical results to the Sitnikov-problem. Celest. Mech. Dyn. Astr. 56: 71 · doi:10.1007/BF00699721
[6] Faruque S.B. (2003). Solution of the Sitnikov problem. Celest. Mech. Dyn. Astr. 87: 353 · Zbl 1106.70323 · doi:10.1023/B:CELE.0000006721.86255.3e
[7] Giacaglia G. (1967). Regularization of the restricted problem of four bodies. Astron. J. 69: 165
[8] Hadjidemetriou J. (1975). The stability of periodic orbits in the three-body problem. Cel. Mech. 12: 255 · Zbl 0318.70009 · doi:10.1007/BF01228563
[9] Hagel J. (1992). A new analytic approach to the Sitnikov problem. Celest. Mech. Dyn. Astr. 53: 267 · Zbl 0757.70006 · doi:10.1007/BF00052614
[10] Hagel J. and Lhotka C. (2005). A high order perturbation analysis of the Sitnikov problem. Celest. Mech. Dyn. Astr. 93: 201 · Zbl 1129.70007 · doi:10.1007/s10569-005-0521-1
[11] Hénon M. (1973). Vertical stability of periodic orbits in the restricted problem I Equal masses. Astron. Astrophys. 28: 415 · Zbl 0272.70023
[12] Jiménez-Lara L. and Escalona-Buendía A. (2001). Symmetries and bifurcations in the Sitnikov problem. Celest. Mech. Dyn. Astr. 79: 97 · Zbl 0993.70010 · doi:10.1023/A:1011109827402
[13] Liu J. and Sun Y.-S. (1990). On the Sitnikov problem. Celest. Mech. Dyn. Astr. 49: 285 · Zbl 0718.70005 · doi:10.1007/BF00049419
[14] Llibre J. and Simó C. (1990). Estudio cualitativo del problema de Sitnikov. Pub. Mat. U.A.B. 18: 49 · doi:10.5565/PUBLMAT_18180_03
[15] Marchal C. (1990). The Three Body Problem. Studies in Astronautics, vol. 4. Elsevier, Amsterdam · Zbl 0719.70006
[16] Markellos V.V., Goudas C.L. and Katsiaris G.A. (1981). Investigating the Universe, vol. 319. D. Reidel Publ. Co., Dordrecht, Holland · Zbl 0302.70010
[17] McMillan W.D. (1913). An integrable case in the restricted problem of three bodies. Astron. J. 27: 285
[18] Moser J. (1973). Stable and Random Motions in Dynamical Systems. Annals of Mathematics Studies, vol. 77. Princeton Univ. Press and University of Tokio Press, Princeton, New Jersey · Zbl 0271.70009
[19] Moulton F.R. (1914). On the stability of direct and retrograde satellite orbits. Monthly Notices Roy. Astron. Soc. 75: 40 · JFM 45.1008.11
[20] Pavanini, G.: Sopra una nuova categoria di soluzioni periodiche nel problema dei tre corpi. Ann. Math. Serie III, Tomo XIII (1907) · JFM 37.0738.03
[21] Pedersen P. (1952). Stabilitätsuntersuchungen im restringierten Vierkörperproblem. Dan. Mat. Fys. Medd. 26: 16 · Zbl 0047.18101
[22] Perdios E.A. (2007). The manifold of families of 3D periodic orbits associated to Sitnikov motions in the restricted three-body problem. Celest. Mech. Dyn. Astr. 99: 85 · Zbl 1162.70311 · doi:10.1007/s10569-007-9088-3
[23] Perdios E.A. and Markellos V.V. (1988). Stability and bifurcations of Sitnikov motions. Celes. Mech. 42: 187 · Zbl 0663.70013 · doi:10.1007/BF01232956
[24] Simó C. (1978). Relative equilibrium solutions in the four-body problem. Celes. Mech. 18: 165 · Zbl 0394.70009 · doi:10.1007/BF01228714
[25] Sitnikov K. (1960). Existence of oscillating motions for the three-body problem. Dokl. Akad. Nauk. USSR 6: 303 · Zbl 0108.18603
[26] Soulis P.S., Bountis T. and Dvorak R. (2007). Stability of motion in the Sitnikov problem. Celest. Mech. Dyn. Astr. 99: 129 · Zbl 1162.70312 · doi:10.1007/s10569-007-9093-6
[27] Skokos Ch. (2001). Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A: Math. Gen. 34: 10029 · Zbl 1004.37021 · doi:10.1088/0305-4470/34/47/309
[28] Skokos Ch., Antonopoulos Ch., Bountis T.C. and Vrahatis M.N. (2004). Detecting order and chaos on Hamiltonian systems by the SALI method. J. Phys. A: Math. Gen. 37: 6269 · doi:10.1088/0305-4470/37/24/006
[29] Wintner A. (1947). The Analytical Foundations of Celestial Mechanics, vol. 151. Princeton Univ. Press, Princeton, New Jersey · Zbl 0041.59006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.