×

Heavy-traffic approximations for fractionally integrated random walks in the domain of attraction of a non-Gaussian stable distribution. (English) Zbl 1254.60035

Let \((X_i)_{i\geq 1}\) be a sequence of i.i.d. mean zero random variables having a distribution function \(F\). Set \(S_0=0\) and \(S_n=\sum_{0\leq i <n}g_iX_{n-i}\), \(n\in\mathbb{N}\), where the series \(g(x)=\sum_{i\geq 0}g_ix^i\) has a radius of convergence of at least \(1\). This \((g,F)\)-process \((S_n)_{n\geq 0}\) comprises, e.g., an autoregressive moving average (ARMA) one. Under specified conditions (among them \(g_n =cn^{\gamma -1}(1+o(n^{-\varepsilon}))\) as \(n\to \infty\) for some \(c,\varepsilon >0\) and \(\gamma >1\); \(F\) is in the domain of attraction of a stable law of index \(\alpha\)), one can prove that appropriately normalized \(\sup_{n\geq 1}(S_n - a\sum_{0\leq i<n}g_i)\) converges weakly as \(a\to 0\) to a certain random variable defined by means of a fractional Lévy stable process.

MSC:

60F17 Functional limit theorems; invariance principles
60G52 Stable stochastic processes
60G22 Fractional processes, including fractional Brownian motion
60K25 Queueing theory (aspects of probability theory)
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60G70 Extreme value theory; extremal stochastic processes
62P20 Applications of statistics to economics
Full Text: DOI

References:

[1] Ph. Barbe, W.P. McCormick, Invariance principle for some FARIMA and nonstationary linear processes in the domain of a stable law, Probab. Theory Related Fields (2010) (in press). arXiv:1007.0576; Ph. Barbe, W.P. McCormick, Invariance principle for some FARIMA and nonstationary linear processes in the domain of a stable law, Probab. Theory Related Fields (2010) (in press). arXiv:1007.0576 · Zbl 1271.60050
[2] Bassan, B.; Bona, E., Moments of stochastic processes governed by Poisson random measures, Comment. Math. Univ. Carolin., 31, 337-343 (1990) · Zbl 0724.60051
[3] Bingham, N. H.; Goldie, C. M.; Teugels, J. L., Regular Variation (1989), Cambridge University Press · Zbl 0667.26003
[4] Braverman, M.; Mikosch, T.; Samorodnitsky, G., Tail probabilities of subadditive functionals of Lévy processes, Ann. Appl. Probab., 12, 69-100 (2002) · Zbl 1035.60045
[5] Csörgő, M.; Csörgő, S.; Horvàth, L.; Mason, D., Normal and stable convergence of integral functions of the empirical distribution function, Ann. Probab., 14, 86-118 (1986) · Zbl 0589.60030
[6] Dieker, A. B., Conditional limit theorems for queues with Gaussian input, a weak convergence approach, Stoch. Proc. Appl., 115, 849-873 (2005) · Zbl 1073.60085
[7] Ganesh, A.; O’Connell, N., A large deviation principle with queueing applications, Stoch. Stoch. Rep., 73, 250036 (2002) · Zbl 1006.60021
[8] Ganesh, A.; O’Connell, N.; Wischik, D., Big Queues (2004), Springer · Zbl 1044.60001
[9] Geffroy, J., Contribution à la théorie des valeurs extrêmes, Publ. Inst. Statist. Univ. Paris, 7-8, 37-185 (1958-1959)
[10] Hall, P.; Weissman, I., On the estimation of extreme tail probabilities, Ann. Statist., 25, 1311-1326 (1997) · Zbl 0880.62036
[11] Kiefer, J., Iterated logarithm analogues for sample quantiles when \(p_n \downarrow 0\), (Proc. Sixth Berkeley Sympos. on Math. Statist. and Probab., vol. 1 (1972)), 227-244 · Zbl 0264.62015
[12] Kingman, J. F.C., The single server queue in heavy traffic, Proc. Cambridge Philos. Soc., 57, 902-904 (1961) · Zbl 0114.11703
[13] Kingman, J. F.C., On queues in heavy traffic, J. R. Stat. Soc. Ser. B, 24, 383-392 (1962) · Zbl 0127.10003
[14] Kingman, J. F.C., The heavy traffic approximation in the theory of queues, (Smith, W. L.; Wilkinson, W. E., Proc. Symp. on Congestion Theory (1965), University of North Carolina Press), 137-159 · Zbl 0189.51604
[15] Privault, N., Moment identities for Poisson-Skorokhod integrals and application to measure invariance, C. R. Acad. Sci., Paris, Sér. I, 347, 1071-1074 (2009) · Zbl 1179.60035
[16] N. Privault, Invariance of Poisson measures under random transformations, 2010. arXiv:1004.2588v1; N. Privault, Invariance of Poisson measures under random transformations, 2010. arXiv:1004.2588v1 · Zbl 1278.60084
[17] Prohorov, Yu. V., Transition phenomena in queueing processes, I, Litov. Fiz. Sb., 3, 199-205 (1963), (in Russian)
[18] Protter, Ph., Stochastic Integration and Differential Equations, A New Approach (1992), Springer
[19] Pruitt, W., The growth of random walks and Lévy processes, Ann. Probab., 9, 948-956 (1981) · Zbl 0477.60033
[20] Resnick, S. I., Heavy-Tail Phenomena, Probabilistic and Statistical Modeling (2007), Springer · Zbl 1152.62029
[21] S. Shneer, V. Wachtel, Heavy-traffic analysis of the maximum of an asymptotically stable random walk, 2009. arXiv:0902.2185; S. Shneer, V. Wachtel, Heavy-traffic analysis of the maximum of an asymptotically stable random walk, 2009. arXiv:0902.2185 · Zbl 1229.60059
[22] Shorack, G. R.; Wellner, J. A., Linear bounds on the empirical distribution function, Ann. Probab., 6, 349-353 (1978) · Zbl 0376.60034
[23] Shorack, G. R.; Wellner, J. A., Empirical Processes with Applications to Statistics (1986), Wiley · Zbl 1170.62365
[24] Szczotka, W.; Woykzyński, W. A., Distribution of suprema of Lévy processes via the heavy traffic invariance principle, Probab. Math. Statist., 23, 251-272 (2003) · Zbl 1048.60038
[25] Whitt, W., Stochastic-Process Limits, An Introduction to Stochastic-Process Limits and their Applications to Queues (2002), Springer · Zbl 0993.60001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.