×

A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs. (English) Zbl 1253.91173

Summary: This paper deals with a multi-period portfolio selection problem with fuzzy returns. A possibilistic mean-semivariance-entropy model for multi-period portfolio selection is presented by taking into account four criteria viz., return, risk, transaction cost and diversification degree of portfolio. In the proposed model, the return level is quantified by the possibilistic mean value of return, the risk level is characterized by the lower possibilistic semivariance of return, and the diversification degree of portfolio is measured by the originally presented possibilistic entropy. Furthermore, a hybrid intelligent algorithm is designed to obtain the optimal portfolio strategy. Finally, the comparison analysis between the possibilistic entropy model and the proportion entropy model is provided by two numerical examples to illustrate the efficiency of the proposed approaches and the designed algorithm.

MSC:

91G10 Portfolio theory
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
Full Text: DOI

References:

[1] Abrams, R. A.; Karmarkar, U. S., Optimal multiperiod investment-consumption policies, Econometrica, 2, 333-353 (1980) · Zbl 0436.90026
[2] Arnott, R. D.; Wagner, W. H., The measurement and control of trading costs, Financial Analysts Journal, 6, 73-80 (1990)
[3] Bertsimas, D.; Pachamanova, D., Robust multiperiod portfolio management in the presence of transaction costs, Computers and Operations Research, 35, 3-17 (2008) · Zbl 1139.91333
[4] Bilbao-Terol, A.; Pérez Gladish, B.; Arenas-Parra, M.; Rodrı´guez Urı´a, M. V., Fuzzy compromise programming for portfolio selection, Applied Mathematics and Computation, 17, 251-264 (2006) · Zbl 1138.91421
[5] Calafiore, G. C., Multi-period portfolio optimization with linear control policies, Automatica, 44, 2463-2473 (2008) · Zbl 1157.91354
[6] Carlsson, C.; Fullér, R., On possibilistic mean value and variance of fuzzy numbers, Fuzzy Sets and Systems, 122, 315-326 (2001) · Zbl 1016.94047
[7] Çelikyurt, U.; Özekici, S., Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach, European Journal of Operational Research, 1, 186-202 (2007) · Zbl 1163.91375
[8] Crama, Y.; Schyns, M., Simulated annealing for complex portfolio selection problems, European Journal of Operational Research, 3, 546-571 (2003) · Zbl 1046.91057
[9] Dubois, D.; Prade, H., Fuzzy Sets and Systems: Theory and Applications (1980), Academic Press: Academic Press New York · Zbl 0444.94049
[10] Elton, E. J.; Gruber, M. J., On the optimality of some multiperiod portfolio selection criteria, The Journal of Business, 2, 231-243 (1974)
[11] Elton, E. J.; Gruber, M. J., The multi-period consumption investment problem and single period analysis, Oxford Economic Papers, 2, 289-301 (1974)
[12] Fang, Y.; Lai, K. K.; Wang, S. Y., Portfolio rebalancing model with transaction costs based on fuzzy decision theory, European Journal of Operational Research, 175, 879-893 (2006) · Zbl 1142.91521
[13] Fang, S. C.; Rajasekera, J. R.; Tsao, H. S.J., Entropy Optimization and Mathematical Programming (1997), Kluwer Academic Publisheres: Kluwer Academic Publisheres Dordrecht · Zbl 0933.90051
[14] Giove, S.; Funari, S.; Nardelli, C., An interval portfolio selection problem based on regret function, European Journal of Operational Research, 170, 253-264 (2006) · Zbl 1079.91030
[15] Goldberg, D. E., Genetic Algorithms: In Search, Optimization and Machine Learning (1989), Addison Wesely: Addison Wesely New York · Zbl 0721.68056
[16] Grauer, R. R.; Hakansson, N. H., On the use of mean-variance and quadratic approximations in implementing dynamic investment strategies: a comparison of returns and investment policies, Management Science, 39, 856-871 (1993)
[17] Gupta, P.; Mehlawat, M. K.; Saxena, A., Asset portfolio optimization using fuzzy mathematical programming, Information Sciences, 178, 1734-1755 (2008) · Zbl 1132.91464
[18] Gülpınar, N.; Rustem, B., Worst-case robust decisions for multi-period mean-variance portfolio optimization, European Journal of Operational Research, 183, 981-1000 (2007) · Zbl 1138.91446
[19] Gülpınar, N.; Rustem, B.; Settergren, R., Multistage stochastic mean-variance portfolio analysis with transaction cost, Innovations, in Financial and Economic Networks, 3, 46-63 (2003)
[20] Hakansson, N. H., Multi-period mean-variance analysis: toward a general theory of portfolio choice, Journal of Finance, 26, 857-884 (1971)
[21] Holland, J. H., Adaptation in Natural and Artificial Systems (1975), University of Michigan Press: University of Michigan Press Ann Arbor · Zbl 0317.68006
[22] Homaifar, A.; Qi, C. X.; Lai, S. H., Constrained optimization via genetic algorithms, Simulation, 62, 242-254 (1994)
[23] Jana, P.; Roy, T. K.; Mazumder, S. K., Multi-objective possibilistic model for portfolio selection with transaction cost, Journal of Computational and Applied Mathematics, 1, 188-196 (2009) · Zbl 1161.91395
[24] Kapur, J. N., Maximum Entropy Models in Science and Engineering (1990), Wiley Eastern Limited: Wiley Eastern Limited New Delhi · Zbl 0746.00014
[25] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, P. M., Optimization by simulated annealing, Science, 220, 671-680 (1983) · Zbl 1225.90162
[26] Lacagnina, V.; Pecorella, A., A stochastic soft constraints fuzzy model for a portfolio selection problem, Fuzzy Sets and Systems, 157, 1317-1327 (2006) · Zbl 1132.90357
[27] Li, D.; Chan, T. F.; Ng, W. L., Safety-first dynamic portfolio selection, Dynamics of Continuous Discrete and Impulsive Systems, 4, 585-600 (1998) · Zbl 0916.90023
[28] Li, D.; Ng, W. L., Optimal dynamic portfolio selection: multiperiod mean-variance formulation, Mathematical Finance, 10, 387-406 (2000) · Zbl 0997.91027
[29] Li, Y. H.; Protopopescu, V. A.; Arnold, N.; Zhang, X. Y.; Gorin, A., Hybrid parallel tempering and simulated annealing method, Applied Mathematics and Computation, 212, 216-228 (2009) · Zbl 1166.65344
[30] Mahfoud, S. W.; Goldberg, D. E., Parallel recombinative simulated annealing: a genetic algorithm, Parallel Computing, 21, 1-28 (1995) · Zbl 0875.68482
[31] Markowitz, H., Portfolio selection, Journal of Finance, 3, 77-91 (1952)
[32] Mossin, J., Optimal multi-period portfolio polices, The Journal of Business, 41, 215-229 (1968)
[33] Pınar, M.Ç., Robust scenario optimization based on downside-risk measure for multi-period portfolio selection, OR Spectrum, 29, 295-309 (2007) · Zbl 1126.91032
[34] Saeidifar, A.; Pasha, E., The possibilistic moments of fuzzy numbers and their applications, Journal of Computational and Applied Mathematics, 2, 1028-1042 (2009) · Zbl 1159.65013
[35] Sheen, J. N., Fuzzy financial profitability analyses of demand side management alternatives from participant perspective, Information Sciences, 169, 329-364 (2005) · Zbl 1114.91322
[36] Van Laarhoven, P. J.M.; Aarts, E. H.L., Simulated Annealing. Simulated Annealing, Theory and Applications (1987), Reidel Publishers: Reidel Publishers Amsterdam · Zbl 0643.65028
[37] Vercher, E.; Bermdez, J. D.; Vicente Segura, J., Fuzzy portfolio optimization under downside risk measures, Fuzzy Sets and Systems, 158, 769-782 (2007) · Zbl 1190.91140
[38] Wang, S. Y.; Zhu, S. S., On fuzzy portfolio selection problems, Fuzzy Optimization and Decision Making, 1, 361-377 (2002) · Zbl 1091.91513
[39] Wang, Z. G.; Wong, Y. S.; Rahman, M., Development of a parallel optimization method based on genetic simulated annealing algorithm, Parallel Computing, 31, 839-857 (2005)
[40] Wei, S. Z.; Ye, Z. X., Multi-period optimization portfolio with bankruptcy control in stochastic market, Applied Mathematics and Computation, 186, 414-425 (2007) · Zbl 1185.91168
[41] Wong, K. P.; Wong, Y. W., Genetic and genetic/simulated-annealing approaches to economic dispatch, IEE Proceedings Generation, Transmission and Distribution, 141, 507-513 (1994)
[42] Xia, Y. S.; Liu, B. D.; Wang, S. Y.; Lai, K. K., A model for portfolio selection with order of expected returns, Computers & Operations Research, 27, 409-422 (2000) · Zbl 1063.91519
[43] Yan, W.; Li, S. R., A class of multi-period semi-variance portfolio selection with a four-factor futures price model, Journal of Applied Mathematics and Computing, 29, 19-34 (2009) · Zbl 1183.91174
[44] Yan, W.; Miao, R.; Li, S. R., Multi-period semi-variance portfolio selection: Model and numerical solution, Applied Mathematics and Computation, 194, 128-134 (2007) · Zbl 1193.91146
[45] Yu, J. R.; Lee, W. Y., Portfolio rebalancing model using multiple criteria, European Journal of Operational Research, 209, 166-175 (2011) · Zbl 1208.91140
[46] Zadeh, L. A., Fuzzy sets, Inform and Control, 8, 338-353 (1965) · Zbl 0139.24606
[47] Zhang, W. G.; Wang, Y. L., Notes on possibilistic variances of fuzzy numbers, Applied Mathematics Letters, 11, 1167-1173 (2007) · Zbl 1137.03031
[48] Zhang, W. G.; Wang, Y. L., An analytic derivation of admissible efficient frontier with borrowing, European Journal of Operational Research, 184, 229-243 (2008) · Zbl 1146.91025
[49] Zhang, W. G.; Zhang, X. L.; Xiao, W. L., Portfolio selection under possibistic mean-variance utility and SMO algorithm, European Journal of Operational Research, 197, 693-700 (2009) · Zbl 1159.90471
[50] Zhang, W. G.; Xiao, W. L.; Xu, W. J., A possibilistic portfolio adjusting model with new added assets, Economic Modelling, 27, 208-213 (2010)
[51] Zhu, S. S.; Li, D.; Wang, S. Y., Risk control over bankruptcy in dynamic portfolio selection: A generalized mean-variance, IEEE Transactions on Automatic Control, 3, 447-457 (2004) · Zbl 1366.91150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.