×

Applications of electrohydrodynamics and Joule heating effects in microfluidic chips: a review. (English) Zbl 1252.76089

Summary: This review article presents an overview on the application of electrohydrodynamics and Joule heating effects in microfluidic chips. A brief introduction of microfluidic chips and a classification of electrohydrodynamics as well as the applications in microfluidic devices are first given. Then basic theories and governing equations of classical electromagnetics are summarized and electroviscous effects in pressure driven flows in a microchannel are presented. Principles and applications of DC electrokinetics, including DC electroosmotic flow, DC electrophoresis, as well as principles of AC electrokinetics, including AC electroosmotic flow and dielectrophoresis are also reviewed. Finally, Joule heating effects in both DC and AC electrokinetics, especially the newly discovered electrothermal flow, are summaried.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Li D Q. Electrokinetics in Microfluidics. New York: Academic Press, 2004
[2] Thorsen T, Maerkl S J, Quake S R. Microfluidic large-scale integration. Science, 2002, 298(5593): 580–584 · doi:10.1126/science.1076996
[3] Reyes D R, Iossifidis D, Auroux P A, et al. Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem, 2002, 74(12): 2623–2636 · doi:10.1021/ac0202435
[4] Vilkner T, Janasek D, Manz A. Micro total analysis systems, recent developments. Anal Chem, 2004, 76(12): 3373–3385 · doi:10.1021/ac040063q
[5] Manz A, Graber N, Widmer H M. Miniaturized total chemical-analysis systems: A novel concept for chemical sensing. Sens Actuator, B-Chemical, 1990, 1(1–6): 244–248 · doi:10.1016/0925-4005(90)80209-I
[6] Jocobson S C, Hergenroder R, Amsey A W, et al. Precomumn reaction with electrophoretic analysis integrated on a microchip. Anal Chem, 1994, 6(6): 4127–4132 · doi:10.1021/ac00095a003
[7] Macevoy W J, Avellaneda M. Electroosmotic coupling: Incorporating larger surface effects with a new length scale. J Col Int Sci, 1997, 8(18): 139–149 · doi:10.1006/jcis.1996.4742
[8] Squires T M, Quake S R. Microfluidics: Fluid physics at the nanoliter scale. Rev Mod Phys, 2005, 77(3): 977–1026 · doi:10.1103/RevModPhys.77.977
[9] Ericson D. Towards numerical prototyping of labs-on-chip: Modeling for integrated microfluidic devices. Microfluid Nanofluid, 2005, 1(4): 301–318 · doi:10.1007/s10404-005-0041-z
[10] Glatzel T, Litterst C, Cupelli C, et al. Computational fluid dynamics (CFD) software tools for microfluidic applications–A case study. Comp Fluids, 2008, 37(3): 218–235 · Zbl 1237.76083 · doi:10.1016/j.compfluid.2007.07.014
[11] Stratton J A. Electromagnetic Theory. New York: McGraw Hill, 1941
[12] Cheng D K. Field and Wave Electromagnetics. Boston: Addison Wesley, 1989
[13] Castellanos A. Electrohydrodynamics. New York: Springer Wien, 1998
[14] Griffiths D J. Introduction Electrodynamics. NJ: Prentice Hall, 1999
[15] Ramos A, Morgan H, Green N G, et al. AC electrokinetics: A review of forces in microelectrode structures. J Phys D: Appl Phys, 1998, 31(18): 2338–2353 · doi:10.1088/0022-3727/31/18/021
[16] Chun Y, Li D Q. Analysis of electrokinetic effects on the liquid flow in rectangular microchannels. Col Surf, 1998, 143(2–3): 339–353 · doi:10.1016/S0927-7757(98)00259-3
[17] Li D Q. Electro-viscous effects on pressure-driven liquid flow in microchannels. Col Surf, 2001, 195(1): 35–57 · doi:10.1016/S0927-7757(01)00828-7
[18] Mala G M, Li D Q, Werner C, et al. Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects. Int J Heat Fluid Flow, 1997, 18(5): 489–496 · doi:10.1016/S0142-727X(97)00032-5
[19] Erickson D, Li D Q. Streaming potential and streaming current methods for charactering heterogeneous solid surface. J Colloid Interface Sci, 2001, 237(2): 283–289 · doi:10.1006/jcis.2001.7476
[20] Ren L Q, Li D Q, Qu W L. Electro-viscous effects on liquid flow in microchannels. J Colloid Interface Sci, 2001, 233(1): 12–22 · doi:10.1006/jcis.2000.7262
[21] Ren L Q, Qu W L, Li D Q. Interfacial electrokinetic effects on liquid flow in micochannels. Int J Heat Mass Transfer, 2001, 44(16): 3125–3134 · Zbl 1106.76483 · doi:10.1016/S0017-9310(00)00339-2
[22] Ren C L, Li D Q. Electroviscous effects on pressure driven flow of dilute electrolyte solutions in small microchannels. J Colloid Interface Sci, 2004, 274(1): 319–330 · doi:10.1016/j.jcis.2003.10.036
[23] Chen X Y, Toh K C, Chai J C, et al. Developing pressure-driven liquid flow in microchannels under the electrokinetic effect. Int J Eng Sci, 2004, 42(5–6): 609–622 · doi:10.1016/j.ijengsci.2003.07.008
[24] Vainshtein P, Gutfinger C. On electroviscous effects in microchannels. J Micromech Microeng, 2002, 12: 252–256 · doi:10.1088/0960-1317/12/3/309
[25] Lu F Z, Yang J, Kwok D Y. Flow field effect on electric double layer during streaming potential measurements. J Phys Chem B, 2004, 108(39): 14970–14975 · doi:10.1021/jp048277z
[26] Monazami R, Manzari M T. Analysis of combined pressure-driven electroosmotic flow through square microchannels. Microfluid Nanofluid, 2007, 3(1): 123–126 · doi:10.1007/s10404-005-0065-4
[27] Jain A, Jensen M K. Analytical modeling of electrokinetic effects on flow and heat transfer in microchannels. Int J Heat Mass Transfer, 2007, 50(25–26): 5161–5167 · Zbl 1140.80331 · doi:10.1016/j.ijheatmasstransfer.2007.07.005
[28] Lin J Y, Fu L M, Yang R J. Numerical simulation of electrokinetic focusing in microfluidic chips. J Micromech Microeng, 2002, 12(6): 955–961 · doi:10.1088/0960-1317/12/6/328
[29] Zhang Y L, Wong T N, Yang C. Dynamic aspects of electroomotic flow. Microfluidics Nanofluidics, 2006, 2(3): 205–214 · doi:10.1007/s10404-005-0063-6
[30] Rawool A S, Mitra S K. Numerical simulation of electroosmotic effect in serpentine channels. Microfluid Nanofluid, 2006, 2(3): 261–269 · doi:10.1007/s10404-005-0076-1
[31] Rawool A S, Mitra S K, Kandlikar S G. Numerical simulation of flow through microchannels with designed roughness. Microfluid Nanofluid, 2006, 2(3): 215–221 · doi:10.1007/s10404-005-0064-5
[32] Monazami R, Manzari M T. Analysis of combined pressure-driven electroosmotic flow through square microchannels. Microfluid Nanofluid, 2007, 3(1): 123–126 · doi:10.1007/s10404-005-0065-4
[33] Bazant M Z. Induced-Charge electrokinetic phenomena: Theory and microfluidic applications. Phys Rev Lett, 2002, 92(6): 066101 · doi:10.1103/PhysRevLett.92.066101
[34] Squires T M, Bazant M Z. Induced-charge electroosmosis. J Fluid Mech, 2004, 509: 217–252 · Zbl 1093.76065 · doi:10.1017/S0022112004009309
[35] Wu Z M, Li D Q. Mixing and flow regulation by induced charge electrokinetic flow in a microchannel with a pair of conducting triangle hurdles. Microfluid Nanofluid, 2008, 5(1): 65–76 · doi:10.1007/s10404-007-0227-7
[36] Xu F, Jabasini M, Baba Y. DNA separation by microchip electrophoresis using low-viscosity hydroxypropylmethylcellulose-50 solutions enhanced by polyhydroxy compounds. Electrophoresis, 2002, 23(20): 3608–3614 · doi:10.1002/1522-2683(200210)23:20<3608::AID-ELPS3608>3.0.CO;2-3
[37] He J L, Deng Y C. High Performance Capillary Electrophoresis. Beijing: Science Press, 1996
[38] Cao J, Hong F J, Cheng P. Numerical study on sample stacking in capillary electrophoresis. China J Chromography, 2007, 25(2): 183–188 · doi:10.1016/S1872-2059(07)60006-6
[39] Osbourn D M, Weiss D J, Lunte C E. On line preconcentration methods for capillary electrophoress. Electrophoresis, 2000, 21(14): 2768–2779 · doi:10.1002/1522-2683(20000801)21:14<2768::AID-ELPS2768>3.0.CO;2-P
[40] Leung S A, Mello A J D. Electrophoretic analysis of amines using reversed-phase, reversed-polarity, head-column field amplified sample stacking and laser-induced fluorescence detection. J Chromat A. 2002, 979(1–2): 171–178 · doi:10.1016/S0021-9673(02)01253-0
[41] Yang H, Chien R L. Sample stacking in laboratory-on-a-chip devices. J Chromat A, 2001, 924(1–2): 155–163 · doi:10.1016/S0021-9673(01)00856-1
[42] Srivastava A, Metaxas A C, So P, et al. Numetrical simulation of DNA sample preconcentration in microdevice electrophoresis. Electrophoresis, 2005, 26(6): 1130–1143 · doi:10.1002/elps.200406192
[43] Bharadwaj R, Santiago J G. On-chip field amplified sample stacking under suppressed electroosmotic flow conditions. In: 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, California: Squaw Valley, 2003
[44] Hirokawa T, Ikuta N, Yoshiyama T, et al. Change of migration time and separation window accompanied by field-enhanced sample stacking in capillary zone electrophoresis. Electrophoresis, 2001, 22(16): 3444–3448 · doi:10.1002/1522-2683(200109)22:16<3444::AID-ELPS3444>3.0.CO;2-Q
[45] Ren L C, Li D Q. Electrokinetic sample transport in a microchannel with spatial electrical conductivity gradients. J Colloid Interface Sci, 2006, 294(2): 482–491 · doi:10.1016/j.jcis.2005.07.051
[46] Cao J, Hong F J, Cheng Ping. Numerical analysis of the influence factors on sample stacking in capillary electrophoresis. China J Chromat, 2007, 25(4): 482–485 · doi:10.1016/S1872-2059(07)60016-9
[47] Cao J, Hong F J, Cheng P. Numerical simulation on the sample stacking in microfluidic chip with double T microchannel. J Shanghai Jiao Tong Univ, 2007, 41(10): 1667–1671
[48] Ramos A, Morgan H, Green N G, et al. AC electrokinetics: A review of forces in microelectrode structures. J Phys D: Appl Phys, 1998, 31(18): 2338–2353 · doi:10.1088/0022-3727/31/18/021
[49] Green N G, Ramos A, Morgan H. AC electrokinetics: A survey of sub-micrometre particle dynamics. J Phys D: Appl Phys, 2000, 33(6): 632–641 · doi:10.1088/0022-3727/33/6/308
[50] Ramos A, Morgan H, Green N G, et al. AC electric-field-induced fluid flow in microelectrodes. J Colloid Interface Sci, 1999, 217(2): 420–422 · doi:10.1006/jcis.1999.6346
[51] Ajdari A. Pumping liquids using asymmetric electrode arrays. Phys Rev E, 2000, 61(1): R45–R48 · doi:10.1103/PhysRevE.61.R45
[52] Ramos A, González A, Castellanos A. Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Phys Rev E, 2003, 67(5): 056302 · doi:10.1103/PhysRevE.67.056302
[53] Ramos A, Morgan H, Green N G. Pumping of liquids with travelling wave electrophoosmosis. J Appl Phys, 2005, 97(8): 084906–084906-8 · doi:10.1063/1.1873034
[54] García-Sánchez P, Ramos A, Green N G. Experiments on ac electrokinetic pumping of liquids using arrays of microelectrodes. IEEE T Dielect El In, 2006, 13(3): 670–677 · doi:10.1109/TDEI.2006.1657983
[55] Green N G, Ramos A, González A, et al. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys Rev E, 2000, 61(4): 4011–4018 · doi:10.1103/PhysRevE.61.4011
[56] González A, Ramos A, Green N G, et al. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis. Phys Rev E, 2000, 61(4): 4019–4028 · doi:10.1103/PhysRevE.61.4019
[57] Green N G, Ramos A, González A, et al. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Phys Rev E, 2002, 66(2): 026305 · doi:10.1103/PhysRevE.66.026305
[58] Bazant M Z, Ben Y X. Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab Chip, 2006, 6(11): 1455–1461 · doi:10.1039/b608092h
[59] Lastochkin D, Zhou R, Wang P, et al. Electrokinetic micropump and micromixer design based on ac Faradaic polarization. Appl Phys, 2004, 96(3): 1730–1733 · doi:10.1063/1.1767286
[60] Yang K, Wu J. Investigation of microflow reversal by ac electrokinetics in orthogonal electrodes for micropump design. Biomicrofluidics, 2008, 2(2): 024101 · doi:10.1063/1.2908026
[61] Wu J. AC electro-osmotic micropump by asymmetric electrode polarization. J Appl Phys, 2008, 103(2): 024907–024907-5 · doi:10.1063/1.2832624
[62] Ng W Y, Goh S, Lam Y C, et al. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab Chip, 2009, 9(6): 802–809 · doi:10.1039/b813639d
[63] Gregersen M M. AC Asymmetric Electrode Micropumps. Dissertation of Doctor Degree. Denmark: Technical University of Denmark, 2005
[64] Cao J, Hong F J, Cheng P. The impedance spectra analysis in ac electroosmosis pump with asymmetrical planar microelectrodes. Micronanoelectronic Tech, 2008, 45(9): 521–526
[65] Green N G, Morgan H. Dielectrophoretic investigations of sub-micrometre latex spheres. J Phys D: Appl Phys, 1997, 30(18): 2626–2633 · doi:10.1088/0022-3727/30/18/018
[66] Doh I, Cho Y H. A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sensors Actuators A, 2005, 121(1): 59–65 · doi:10.1016/j.sna.2005.01.030
[67] Chen D F, Du H, Li W H. A 3D paired microelectrode array for accumulation and separation of microparticles. J Micromech Microeng, 2006, 16(7): 1162–1169 · doi:10.1088/0960-1317/16/7/008
[68] Pham P, Texier I, Larrea A S, et al. Numerical design of a 3-D microsystem for bioparticle dielectrophoresis: The pyramidal microdevice. J Electrostat, 2007, 95(8): 511–520 · doi:10.1016/j.elstat.2006.11.008
[69] Li W H, Du H, Chen D F, et al. Analysis of dielectrophoretic electrode arrays for nanoparticle manipulation. Comput Material Sci, 2004, 30(3–4): 320–325 · doi:10.1016/j.commatsci.2004.02.012
[70] Chen D F, Du H, Li W H, et al. Numerical modeling of dielectrophoresis using a meshless approach. J Micromech Microeng, 2005, 15(5): 1040–1048 · doi:10.1088/0960-1317/15/5/021
[71] Green N G, Ramos A, Horgan H. Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method. J Electrostat, 2002, 56(2): 235–254 · doi:10.1016/S0304-3886(02)00069-4
[72] Morgan H, Izquierdo A G, Bakewell D, et al. The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: Analytical solution using Fourier series. J Phys D: Appl Phys, 2001, 34(10): 1553–1561 · doi:10.1088/0022-3727/34/10/316
[73] Kua C H, Lam Y C, Rodriguez I, et al. Dynamic cell fractionation and transportation using moving dielectrophoresis. Anal Chem, 2007, 79(18): 6975–6987 · doi:10.1021/ac070810u
[74] Kang Y J, Li D Q, Kalams S A, et al. DC-Dielectrophoretic separation of biological cells by size. Biomed Microdevices, 2008, 10(2): 243–249 · doi:10.1007/s10544-007-9130-y
[75] Kang K H, Kang Y J, Xuan X C, et al. Continuous separation of microparticles by size with direct current-dielectrophoresis. Electrophoresis, 2006, 27(3): 694–702 · doi:10.1002/elps.200500558
[76] Erickson D, Sinton D, Li D Q. Joule heating and heat transfer in poly (dimethylsiloxane) microfluidics systems. Lab Chip, 2001, 3(3): 141–149 · doi:10.1039/b306158b
[77] Cetin B, Li D Q. Effect of Joule heating on electrokinetic transport. Electrophoresis, 2008, 29(5): 994–1005 · doi:10.1002/elps.200700601
[78] Xuan X C. Joule heating in electrokinetic flow. Electrophoresis, 2008, 29(1): 33–43 · doi:10.1002/elps.200700302
[79] Tang G Y, Yang C, Chai J C, et al. Numerical simulation of Joule heating effect on sample band transport in capillary electrophoresis. Analytica Chimca Acta, 2006, 561(1–2): 138–149 · doi:10.1016/j.aca.2005.12.068
[80] Tang G Y, Yan D G, Yang C, et al. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels. Electrophoresis, 2006, 27(3): 628–639 · doi:10.1002/elps.200500681
[81] Xuan X C, Sinton D, Li D Q, Thermal end effects on electroosmotic flow in a capillary. Int J Heat Mass Transfer, 2004, 47(14–16): 3145–3147 · Zbl 1079.76683 · doi:10.1016/j.ijheatmasstransfer.2004.02.023
[82] Xian X C, Xu B, Sinton D, et al. Electroosmotic flow with Joule heating effects. Lab Chip, 2004, 4(3): 230–236 · doi:10.1039/b315036d
[83] Porras S P, Marzial E I, Gaš B, et al. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis. Electrophoresis, 2003, 24(10): 1553–1564 · doi:10.1002/elps.200305437
[84] Palonen S, Jussila M, Porras S P, et al. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: Eehanol as background electrolyte solvent. Electrophoresis, 2004, 25(2): 344–354 · doi:10.1002/elps.200305756
[85] Peterson N J, Nikolajsen R P H, Mogensen K B, et al. Effect of Joule heating on efficiency and performance for microchip-based and capillary based electrophoretic separation systems: A closer look. Electrophoresis, 2004, 25(2): 253–269 · doi:10.1002/elps.200305747
[86] Xuan X C, Li D Q. Band-broadening in capillary zone electrophoresis with axial temperature gradients. Electrophoresis, 2005, 26(1): 166–175 · doi:10.1002/elps.200406141
[87] Cao J, Hong F J, Cheng P. Numerical study of radial temperature gradient effect on separation efficiency in capillary electrophoresis. Int Commun Heat Mass Trans, 2007, 34(9–10): 1048–1055 · doi:10.1016/j.icheatmasstransfer.2007.04.004
[88] González A, Ramos A, Morgan H, et al. Electrothermal flows generated by alternating and rotating electric fields in Microsystems. J Fluid Mech, 2006, 564: 415–433 · Zbl 1101.76062 · doi:10.1017/S0022112006001595
[89] Chen D F, Du H. Simulation studies on electrothermal fluid flow induced in a dielectrophoretic microelectrode system. J Micromech Microeng, 2006, 16(11): 2411–2419 · doi:10.1088/0960-1317/16/11/023
[90] Perch-Nielsen I R, Green N G, Wolff A. Numerical simulation of travelling wave induced electrothermal fluid flow. J Phys D: Appl Phys, 2004, 37(16): 2323–2330 · doi:10.1088/0022-3727/37/16/016
[91] Wang D Z, Sinurdson M, Meinhart C D. Experimental analysis of particle and fluid motion in ac electrokinetics. Exp Fluids, 2005, 38(1): 1–10 · doi:10.1007/s00348-004-0864-5
[92] Green N G, Ramos A, González A, et al. Electric field induced fluid flow on microelectrodes: The effect of illumination. J Phys D: Appl Phys, 2000, 33(2): L13–L17 · doi:10.1088/0022-3727/33/2/102
[93] Green N G, Ramos A, González A, et al. Electrothermally induced fluid flow on microelectrodes. J Electrostat, 2001, 53(2): 71–87 · doi:10.1016/S0304-3886(01)00132-2
[94] Feldman H C, Sinurdson M, Meinhart C D. AC electrothermal enhancement of heterogeneous assays in microfluidics. Lab Chip, 2007, 7(11): 1553–1559 · doi:10.1039/b706745c
[95] Cao J, Cheng P, Hong F J. A numerical study of an electrothermal vortex enhanced micromixer. Microfluid Nanofluid, 2008, 5(1): 13–21 · doi:10.1007/s10404-007-0201-4
[96] Du E, Manoochehri S. Enhanced ac electrothermal fluidic pumping in microgrooved channels. J Appl Phys, 2008, 104(6): 064902 · doi:10.1063/1.2977617
[97] Moritz H, Marco S, Jan G. AC-field-induced fluid pumping in microsystems with asymmetric temperature gradients. Phys Rev E, 2009, 79(2): 026309 · doi:10.1103/PhysRevE.79.026309
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.