×

Estimating generalized semiparametric additive models using parameter cascading. (English) Zbl 1252.62042

Summary: Elimination of nuisance parameters is a central but difficult problem in statistical inference. We propose the parameter cascading method to estimate statistical models that involve nuisance parameters, structural parameters, and complexity parameters. The parameter cascading method has several unique aspects. First, we consider functional relationships between parameters, quantitatively described using analytical derivatives. These functional relationships can be explicit or implicit, and in the latter case the implicit function theorem is applied to obtain the required derivatives. Second, we can express the gradients and Hessian matrices analytically, which is essential for fast and stable computation. Third, we develop the unconditional variance estimates for parameters, which include the uncertainty coming from other parameter estimates.
The parameter cascading method is demonstrated by estimating generalized semiparametric additive models (GSAMs), where the response variable is allowed to be from any distribution. The practical necessity and empirical performance of the parameter cascading method are illustrated through a simulation study, and two applied examples, one on finding the effect of air pollution on public health, and the other on the management of a retirement fund. The results demonstrate that the parameter cascading method is a good alternative to traditional methods.

MSC:

62G08 Nonparametric regression and quantile regression
62J12 Generalized linear models (logistic models)
65C60 Computational problems in statistics (MSC2010)
Full Text: DOI

References:

[1] Barndorff-Nielsen, O.: On a formal for the distribution of a maximum likelihood estimator. Biometrika 70, 343–365 (1983) · Zbl 0532.62006 · doi:10.1093/biomet/70.2.343
[2] Berger, J.O., Liseo, B., Wolpert, R.L.: Integrated likelihood methods for eliminating nuisance parameters. Stat. Sci. 14, 1–28 (1999) · Zbl 1059.62521
[3] Bryant, P.G., Smith, M.A.: Practical Data Analysis: Case Studies in Business. Irwin, Chicago (1995)
[4] Cox, D., Reid, N.: Parameter orthogonality and approximate conditional inference. J. R. Stat. Soc. 49(1), 1–39 (1987) · Zbl 0616.62006
[5] Cruddas, A.M., Reid, N., Cox, D.R.: A time series illustration of approximate conditional likelihood. Biometrika 76(2), 231–237 (1989) · Zbl 0666.62090 · doi:10.1093/biomet/76.2.231
[6] Dominici, F., McDermott, A., Zeger, S., Samet, J.: On the use of generalized additive models in time-series studies of air pollution and health. Am. J. Epidemiol. 156, 193–203 (2002) · doi:10.1093/aje/kwf062
[7] Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman and Hall/CRC, New York (1993) · Zbl 0835.62038
[8] Fan, J., Li, R.: New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. J. Am. Stat. Assoc. 99, 710–723 (2004) · Zbl 1117.62329 · doi:10.1198/016214504000001060
[9] Gu, C., Ma, P.: Generalized nonparametric mixed-effect models: Computation and smoothing parameter selection. J. Comput. Graph. Stat. 14, 485–504 (2005) · doi:10.1198/106186005X47651
[10] Härdle, W., Müller, M., Sperlich, S., Werwatz, A.: Nonparametric and Semiparametric Models. Springer, Berlin (2004) · Zbl 1059.62032
[11] Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman and Hall, London (1990) · Zbl 0747.62061
[12] He, X., Zhu, Z., Fung, W.: Estimation in a semiparametric model for longitudinal data with unspecified dependence structure. Biometrika 89, 579–590 (2002) · Zbl 1036.62035 · doi:10.1093/biomet/89.3.579
[13] Lin, D., Ying, Z.: Semiparamtric and nonparametric regression analysis of longitudinal data. J. Am. Stat. Assoc. 96, 103–126 (2001) · Zbl 1015.62038 · doi:10.1198/016214501750333018
[14] Lin, X., Carroll, R.: Semiparamtric regression for clustered data using generalized estimating equations. J. Am. Stat. Assoc. 96, 1045–1056 (2001) · Zbl 1072.62566 · doi:10.1198/016214501753208708
[15] Lin, X., Carroll, R.: Semiparamtric estimation in general repeated measures problems. J. R. Stat. Soc. B 68, 69–88 (2006) · Zbl 1141.62026 · doi:10.1111/j.1467-9868.2005.00533.x
[16] Neyman, J., Scott, E.L.: Consistent estimates based on partially consistent observations. Econometrika 16, 1–32 (1948) · Zbl 0034.07602 · doi:10.2307/1914288
[17] Ramsay, J.O., Silverman, B.W.: Functional Data Analysis, 2nd edn. Springer, New York (2005) · Zbl 1079.62006
[18] Ramsay, T.: 2005. Bias in semiparametric additive models. Tech. rep., University of Ottawa
[19] Ramsay, T., Burnett, R., Krewski, D.: The effect of concurvity in generalized additive models linking mortality to ambient particulate matter. Epidemiology 14(1), 18–23 (2003) · doi:10.1097/00001648-200301000-00009
[20] Rice, J.: Convergence rates for partially splined models. Stat. Probab. Lett. 4(44), 203–208 (1986) · Zbl 0628.62077 · doi:10.1016/0167-7152(86)90067-2
[21] Ruppert, D., Wand, M.P., Carroll, R.J.: Semiparametric Regression. Cambridge University Press, Cambridge (2003) · Zbl 1038.62042
[22] Severini, T., Staniswalis, J.: Quasi-likelihood estimation in semiparametric models. J. Am. Stat. Assoc. 89, 501–511 (1994) · Zbl 0798.62046 · doi:10.1080/01621459.1994.10476774
[23] Speckman, P.: Kernel smoothing in partial linear models. J. R. Stat. Soc. B 50, 413–436 (1988) · Zbl 0671.62045
[24] Wahba, G.: A comparison of gcv and gml for choosing the smoothing parameter in the generalized spline smoothing problem. Ann. Stat. 13(4), 1378–1402 (1985) · Zbl 0596.65004 · doi:10.1214/aos/1176349743
[25] Wolfgang, H., Liang, H., Gao, J.: Partially Linear Models. Springer, New York (2000) · Zbl 0968.62006
[26] Wood, S.N.: Generalized Additive Models. Chapman and Hall/CRC, New York (2006)
[27] Zeger, S., Diggle, P.: Semiparametric models for longitudinal data with application to cd4 cell numbers in hiv seroconverters. Biometrics 50, 689–699 (1994) · Zbl 0821.62093 · doi:10.2307/2532783
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.