×

Ergodic approximation of the distribution of a stationary diffusion: rate of convergence. (English) Zbl 1252.60080

The authors consider a class of Brownian ergodic diffusion processes with unique invariant distribution, drift and variance which are Lipschitz continuous functions. They study the rate of convergence to the distribution of this process, when stationary, of some weighted measures based on both the true paths and the Euler discretization scheme with decreasing step. The central limit theorems are formally established for the marginal empirical measure of these processes. The obtained results are illustrated by simulations in connection with barrier option pricing.

MSC:

60J60 Diffusion processes
60G10 Stationary stochastic processes
65C05 Monte Carlo methods
65D15 Algorithms for approximation of functions
60F05 Central limit and other weak theorems

References:

[1] Alfonsi, A. (2005). On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11 355-384. · Zbl 1100.65007 · doi:10.1515/156939605777438569
[2] Andersen, L. B. G. (2007). Efficient simulation of the Heston stochastic volatility model. Available at .
[3] Basak, G. K. and Bhattacharya, R. N. (1992). Stability in distribution for a class of singular diffusions. Ann. Probab. 20 312-321. · Zbl 0749.60073 · doi:10.1214/aop/1176989928
[4] Berkaoui, A., Bossy, M. and Diop, A. (2008). Euler scheme for SDEs with non-Lipschitz diffusion coefficient: Strong convergence. ESAIM Probab. Stat. 12 1-11 (electronic). · Zbl 1183.65004 · doi:10.1051/ps:2007030
[5] Bhattacharya, R. N. (1982). On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Z. Wahrsch. Verw. Gebiete 60 185-201. · Zbl 0468.60034 · doi:10.1007/BF00531822
[6] Billingsley, P. (1968). Convergence of Probability Measures . Wiley, New York. · Zbl 0172.21201
[7] Bouleau, N. and Lépingle, D. (1994). Numerical Methods for Stochastic Processes . Wiley, New York. · Zbl 0822.60003
[8] Deelstra, G. and Delbaen, F. (1998). Convergence of discretized stochastic (interest rate) processes with stochastic drift term. Appl. Stochastic Models Data Anal. 14 77-84. · Zbl 0915.60064 · doi:10.1002/(SICI)1099-0747(199803)14:1<77::AID-ASM338>3.0.CO;2-2
[9] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application : Probability and Mathematical Statistics . Academic Press, New York. · Zbl 0462.60045
[10] Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies 6 327-343. · Zbl 1384.35131
[11] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus , 2nd ed. Graduate Texts in Mathematics 113 . Springer, New York. · Zbl 0734.60060
[12] Kunita, H. (1984). Stochastic differential equations and stochastic flows of diffeomorphisms. In École d’Été de Probabilités de Saint-Flour , XII- 1982. Lecture Notes in Math. 1097 143-303. Springer, Berlin. · Zbl 0554.60066
[13] Ladyzhenskaya, O. A. and Ural’tseva, N. N. (1968). Linear and Quasilinear Elliptic Equations . Academic Press, New York. · Zbl 0164.13002
[14] Lamberton, D. and Lapeyre, B. (1996). Introduction to Stochastic Calculus Applied to Finance . Chapman and Hall, London. · Zbl 0949.60005
[15] Lamberton, D. and Pagès, G. (2002). Recursive computation of the invariant distribution of a diffusion. Bernoulli 8 367-405. · Zbl 1006.60074
[16] Lamberton, D. and Pagès, G. (2003). Recursive computation of the invariant distribution of a diffusion: The case of a weakly mean reverting drift. Stoch. Dyn. 3 435-451. · Zbl 1044.60069 · doi:10.1142/S0219493703000838
[17] Lemaire, V. (2005). Estimation numérique de la mesure invariante d’un processus de diffusion. Ph.D. thesis, Univ. Marne-La Vallée.
[18] Lemaire, V. (2007). An adaptive scheme for the approximation of dissipative systems. Stochastic Process. Appl. 117 1491-1518. · Zbl 1126.65005 · doi:10.1016/j.spa.2007.02.004
[19] Pagès, G. and Panloup, F. (2009). Approximation of the distribution of a stationary Markov process with application to option pricing. Bernoulli 15 146-177. · Zbl 1214.60036 · doi:10.3150/08-BEJ142
[20] Panloup, F. (2006). Approximation du régime stationnaire d’une EDS avec sauts. Ph.D. thesis, Univ. Paris VI.
[21] Panloup, F. (2008). Recursive computation of the invariant measure of a stochastic differential equation driven by a Lévy process. Ann. Appl. Probab. 18 379-426. · Zbl 1136.60049 · doi:10.1214/105051607000000285
[22] Panloup, F. (2008). Computation of the invariant measure for a Lévy driven SDE: Rate of convergence. Stochastic Process. Appl. 118 1351-1384. · Zbl 1143.60044 · doi:10.1016/j.spa.2007.09.007
[23] Pardoux, É. and Veretennikov, A. Y. (2001). On the Poisson equation and diffusion approximation. I. Ann. Probab. 29 1061-1085. · Zbl 1029.60053 · doi:10.1214/aop/1015345596
[24] Pardoux, É. and Veretennikov, A. Y. (2003). On Poisson equation and diffusion approximation. II. Ann. Probab. 31 1166-1192. · Zbl 1054.60064 · doi:10.1214/aop/1055425774
[25] Pardoux, É. and Veretennikov, A. Y. (2005). On the Poisson equation and diffusion approximation. III. Ann. Probab. 33 1111-1133. · Zbl 1071.60022 · doi:10.1214/009117905000000062
[26] Protter, P. E. (2005). Stochastic Integration and Differential Equations , 2nd ed. Stochastic Modelling and Applied Probability 21 . Springer, Berlin.
[27] Talay, D. (1990). Second order discretization schemes of stochastic differential systems for the computation of the invariant law. Stoch. Stoch. Rep. 29 13-36. · Zbl 0697.60066 · doi:10.1080/17442509008833606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.