×

From Peierls brackets to a generalized Moyal bracket for type-I gauge theories. (English) Zbl 1252.53099

Summary: In the space-of-histories approach to gauge fields and their quantization, the Maxwell, Yang-Mills and gravitational field are well known to share the property of being type-I theories, i.e. Lie brackets of the vector fields which leave the action functional invariant are linear combinations of such vector fields, with coefficients of linear combination given by structure constants. The corresponding gauge-field operator in the functional integral for the in-out amplitude is an invertible second-order differential operator. For such an operator, we consider advanced and retarded Green functions giving rise to a Peierls bracket among group-invariant functionals. Our Peierls bracket is a Poisson bracket on the space of all group-invariant functionals in two cases only: either the gauge-fixing is arbitrary but the gauge fields lie on the dynamical sub-space; or the gauge-fixing is a linear functional of gauge fields, which are generic points of the space of histories. In both cases, the resulting Peierls bracket is proved to be gauge-invariant by exploiting the manifestly covariant formalism. Moreover, on quantization, a gauge-invariant Moyal bracket is defined that reduces to \(i\hbar\) times the Peierls bracket to lowest order in \(\hbar\).

MSC:

53D55 Deformation quantization, star products
53D17 Poisson manifolds; Poisson groupoids and algebroids
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
81S10 Geometry and quantization, symplectic methods
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] DeWitt B. S., International Series of Monographs on Physics 114, in: The Global Approach to Quantum Field Theory (2003)
[2] Dirac P. A. M., Lectures on Quantum Mechanics (2001) · Zbl 1156.01359
[3] DOI: 10.1103/PhysRevD.43.1170 · doi:10.1103/PhysRevD.43.1170
[4] DOI: 10.1017/CBO9780511524424 · Zbl 0889.53052 · doi:10.1017/CBO9780511524424
[5] DOI: 10.1103/PhysRevD.62.084010 · doi:10.1103/PhysRevD.62.084010
[6] DOI: 10.1063/1.1419319 · doi:10.1063/1.1419319
[7] DOI: 10.1016/j.aop.2005.04.009 · Zbl 1079.81041 · doi:10.1016/j.aop.2005.04.009
[8] B. S. DeWitt, Relativity, Groups and Topology II, eds. B. S. DeWitt and R. Stora (North–Holland, Amsterdam, 1984) pp. 381–738.
[9] DOI: 10.1098/rspa.1952.0158 · Zbl 0048.44606 · doi:10.1098/rspa.1952.0158
[10] DeWitt B. S., Dynamical Theory of Groups and Fields (1965) · Zbl 0169.57101
[11] DOI: 10.1006/aphy.1994.1116 · Zbl 0805.58024 · doi:10.1006/aphy.1994.1116
[12] DOI: 10.1006/aphy.1994.1117 · Zbl 0806.58056 · doi:10.1006/aphy.1994.1117
[13] DOI: 10.1142/S0217751X03015453 · Zbl 1037.81054 · doi:10.1142/S0217751X03015453
[14] Gracia-Bondia J. M., J. High Energy Phys. 04 pp 026–
[15] DOI: 10.1103/PhysRevLett.4.317 · Zbl 0089.21004 · doi:10.1103/PhysRevLett.4.317
[16] DOI: 10.1088/0264-9381/22/17/011 · Zbl 1129.83011 · doi:10.1088/0264-9381/22/17/011
[17] DOI: 10.1088/0264-9381/23/6/005 · Zbl 1091.83022 · doi:10.1088/0264-9381/23/6/005
[18] DOI: 10.1017/CBO9780511755804 · doi:10.1017/CBO9780511755804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.