×

Localization of solutions to a doubly degenerate parabolic equation with a strongly nonlinear source. (English) Zbl 1252.35167

The authors study the localization of solutions to the Cauchy problem for a doubly degenerate parabolic equation with a strongly nonlinear source \[ u_t=\text{div\,}(|\nabla u^m|^{p-2}\nabla u^l)+u^q,\quad (x,t)\in \mathbb R^N\times (0,T), \] where \(N \geq 1,\) \(p > 2\) and \(m, l, q > 1.\) In the case when \(q > l + m(p - 2),\) it is proved that the solution \(u(x, t)\) has strict localization if the initial data \(u_0(x)\) has a compact support, while \(u(x, t)\) has the property of effective localization if the initial data possesses radially symmetric decay. Moreover, when \(1 < q < l + m(p - 2),\) it turns out that the solution of the Cauchy problem blows up at any point of \(\mathbb R^N\) for arbitrary initial data with compact support.

MSC:

35K65 Degenerate parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
35K59 Quasilinear parabolic equations
35B44 Blow-up in context of PDEs
35K15 Initial value problems for second-order parabolic equations
Full Text: DOI

References:

[1] Andreucci D., Adv. Differential Equations 10 pp 89–
[2] DOI: 10.1090/S0002-9947-1983-0712265-1 · doi:10.1090/S0002-9947-1983-0712265-1
[3] DOI: 10.1016/0362-546X(85)90081-1 · Zbl 0596.35073 · doi:10.1016/0362-546X(85)90081-1
[4] DOI: 10.1016/j.na.2010.06.026 · Zbl 1195.35068 · doi:10.1016/j.na.2010.06.026
[5] DOI: 10.1006/jmaa.1999.6663 · Zbl 0942.35025 · doi:10.1006/jmaa.1999.6663
[6] DOI: 10.1007/978-1-4612-0895-2 · doi:10.1007/978-1-4612-0895-2
[7] DOI: 10.1007/s10114-004-0375-6 · Zbl 1073.35130 · doi:10.1007/s10114-004-0375-6
[8] Galaktionov V. A., J. Differential Equations 21 pp 15– · Zbl 0449.35049
[9] DOI: 10.1016/0041-5553(86)90007-8 · Zbl 0619.35043 · doi:10.1016/0041-5553(86)90007-8
[10] DOI: 10.1090/S0002-9947-04-03613-X · Zbl 1060.35059 · doi:10.1090/S0002-9947-04-03613-X
[11] Hu X. G., Acta Math. Sinica 51 pp 291–
[12] DOI: 10.1070/RM1987v042n02ABEH001309 · Zbl 0642.35047 · doi:10.1070/RM1987v042n02ABEH001309
[13] Kamin S., Comm. Pure Appl. Math. 35 pp 113–
[14] Li J., J. Math. Anal. Appl. 264 pp 248–
[15] DOI: 10.1016/j.jde.2008.07.038 · Zbl 1161.35030 · doi:10.1016/j.jde.2008.07.038
[16] DOI: 10.1016/j.nonrwa.2008.10.048 · Zbl 1182.35028 · doi:10.1016/j.nonrwa.2008.10.048
[17] DOI: 10.1006/jdeq.1996.0155 · Zbl 0862.35078 · doi:10.1006/jdeq.1996.0155
[18] DOI: 10.1515/9783110889864 · doi:10.1515/9783110889864
[19] DOI: 10.1023/B:SIMJ.0000013021.66528.b6 · doi:10.1023/B:SIMJ.0000013021.66528.b6
[20] DOI: 10.1080/00036810701435711 · Zbl 1129.35044 · doi:10.1080/00036810701435711
[21] DOI: 10.1007/978-94-011-2710-3_10 · doi:10.1007/978-94-011-2710-3_10
[22] DOI: 10.1142/4782 · doi:10.1142/4782
[23] Xiang Z. Y., Math. Methods Appl. Sci. 33 pp 1078–
[24] DOI: 10.1016/j.na.2007.01.021 · Zbl 1135.35314 · doi:10.1016/j.na.2007.01.021
[25] DOI: 10.1007/s11425-007-0168-3 · Zbl 1183.35184 · doi:10.1007/s11425-007-0168-3
[26] DOI: 10.1006/jdeq.1995.1132 · Zbl 0836.35081 · doi:10.1006/jdeq.1995.1132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.