×

Grey-box modelling of a viscose-fibre drying process. (English) Zbl 1251.93023

Summary: A dynamic model of a through-air-drying process for viscose staple fibres is presented in this article. In this process fibres formed to a porous web are transported through a convective dryer that consists of numerous rotating drum sieves. Finally, the fibres pass through two remoistening drums. The structure of the model is modular and scalable. On applying spatial discretization the originally partial differential system equations (conservation of mass and energy) turn into a system of ordinary differential equations. Drying rates and heat transfer rates are calculated using phenomenological equations for heat and mass transfer. Kinetics of drying is separated into three phases, where viscose fibres are hygroscopic. The process model is able to simulate transient behaviour of the dryer like changes of the incoming fibre moisture, changes of the drying air temperature and humidity and changes of the thickness of fibre layer on the drums. Stationary validation of the longitudinal fibre moisture distribution along the dryer shows good accordance with measurement data at different operating points, for example, different temperature profiles. Dynamic data like temperature transients are utilized for both model fitting and validation of the dynamic model. For the remoistening process and disturbance behaviour concerning the thickness of the fibre web, black box models have been identified. Results of a successful application of the model in a predictive control algorithm are shown.

MSC:

93A30 Mathematical modelling of systems (MSC2010)
93C95 Application models in control theory
93B40 Computational methods in systems theory (MSC2010)
93C20 Control/observation systems governed by partial differential equations

References:

[1] Shukla K.N., Diffusion Processes during Drying of Solids (1990) · Zbl 1103.80002
[2] DOI: 10.1201/9781420017618 · doi:10.1201/9781420017618
[3] DOI: 10.1081/DRT-120019059 · doi:10.1081/DRT-120019059
[4] DOI: 10.1081/DRT-100108255 · doi:10.1081/DRT-100108255
[5] Turner I., Mathematical Modeling and Numerical Techniques in Drying Technology (1996)
[6] Incropera F.P., Fundamentals of Heat and Mass Transfer, 7. ed. (2011)
[7] Schiesser W.E., Computational Transport Phenomena: Numerical Methods for the Solution of Transport Problems (1997)
[8] DOI: 10.1080/07373930500210317 · doi:10.1080/07373930500210317
[9] DOI: 10.1080/07373930601161088 · doi:10.1080/07373930601161088
[10] DOI: 10.1080/07373930601031430 · doi:10.1080/07373930601031430
[11] DOI: 10.1080/07373930008917786 · doi:10.1080/07373930008917786
[12] DOI: 10.1081/DRT-120015419 · doi:10.1081/DRT-120015419
[13] DOI: 10.1081/DRT-100105292 · doi:10.1081/DRT-100105292
[14] DOI: 10.1007/s11242-006-9025-z · doi:10.1007/s11242-006-9025-z
[15] DOI: 10.1137/1.9780898717839 · doi:10.1137/1.9780898717839
[16] Gresho P.M., Incompressible Flow and the Finite Element Method. Volume 1: Advection-Diffusion (2000) · Zbl 0988.76005
[17] Ozisik M.N., Finite Difference Methods in Heat Transfer (1994) · Zbl 0855.65097
[18] DOI: 10.1007/BF01448839 · JFM 54.0486.01 · doi:10.1007/BF01448839
[19] DOI: 10.1007/978-3-642-10194-6 · doi:10.1007/978-3-642-10194-6
[20] Gnielinski V., Verfahrenstechnik 12 (6) pp 363– (1978)
[21] Stieß M., Mechanische Verfahrenstechnik 1 (1995) · doi:10.1007/978-3-662-08600-1
[22] Krischer O., Die wissenschaftlichen Grundlagen der Trocknungstechnik (1992)
[23] DOI: 10.1016/j.jfoodeng.2010.04.007 · doi:10.1016/j.jfoodeng.2010.04.007
[24] DOI: 10.1016/j.cep.2006.11.001 · doi:10.1016/j.cep.2006.11.001
[25] DOI: 10.1002/masy.200651208 · doi:10.1002/masy.200651208
[26] Ljung L., System Identification: Theory for the User, 2. ed. (1999) · Zbl 0615.93004
[27] Knoglinger J., Lenzinger Ber 75 pp 37– (1996)
[28] Schuster, A. and Kozek, M. Constrained Model Predictive Control Implementation in an Industrial Drying Process. Proceedings of the 7th IEEE International Conference on Computational. Palma de Mallorca, Spain: Cybernetics, IEEE.
[29] Schuster, A., Kozek, M., Voglauer, B. and Voigt, A. Constrained Model Predictive Control of an Industrial Drying Process for Viscose Staple Fibres. Proceedings of the 2010 ASME Dynamic Systems and Control Conference. Cambridge, MA: ASME. · Zbl 1251.93023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.