×

Improving the computational efficiency in a global formulation (GLIDE) for interactive multiobjective optimization. (English) Zbl 1251.90355

Summary: We present a new general formulation for multiobjective optimization that can accommodate several interactive methods of different types (regarding various types of preference information required from the decision maker). This formulation provides a comfortable implementation framework for a general interactive system and allows the decision maker to conveniently apply several interactive methods in one solution process. In other words, the decision maker can at each iteration of the solution process choose how to give preference information to direct the interactive solution process, and the formulation enables changing the type of pReferences, that is, the method used, whenever desired. The first general formulation, GLIDE, included eight interactive methods utilizing four types of pReferences. Here we present an improved version where we pay special attention to the computational efficiency (especially significant for large and complex problems), by eliminating some constraints and parameters of the original formulation. To be more specific, we propose two new formulations, depending on whether the multiobjective optimization problem to be considered is differentiable or not. Some computational tests are reported showing improvements in all cases. The generality of the new improved formulations is supported by the fact that they can accommodate six interactive methods more, that is, a total of fourteen interactive methods, just by adjusting parameter values.

MSC:

90C29 Multi-objective and goal programming

Software:

NAG; NIMBUS

References:

[1] Benayoun, R., de Montgolfier, J., Tergny, J., & Laritchev, O. (1971). Linear programming with multiple objective functions: Step method (STEM). Mathematical Programming, 1(3), 366–375. · Zbl 0242.90026 · doi:10.1007/BF01584098
[2] Buchanan, J. T. (1997). A naïve approach for solving MCDM problems: the GUESS method. Journal of the Operational Research Society, 48, 202–206. · Zbl 0891.90141
[3] Caballero, R., Luque, M., Molina, J., & Ruiz, F. (2002). PROMOIN: an interactive system for multiobjective programming. International Journal of Information Technology & Decision Making, 1(4), 635–656. · doi:10.1142/S0219622002000403
[4] Chankong, V., & Haimes, Y. Y. (1978). The interactive surrogate worth trade-off (ISWT) method for multiobjective decision-making. In S. Zionts (Ed.), Multiple criteria problem solving (pp. 42–67). Berlin: Springer. · Zbl 0385.90106
[5] Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making theory and methodology. New York: Elsevier Science. · Zbl 0622.90002
[6] Chinchuluun, A., & Pardalos, P. M. (2007). A survey of recent developments in multiobjective optimization. Annals of Operations Research, 154(1), 29–50. · Zbl 1146.90060 · doi:10.1007/s10479-007-0186-0
[7] Deb, K., & Miettinen, K. (2010). Nadir point estimation using evolutionary approaches: better accuracy and computational speed through focused search. In M. Ehrgott, B. Naujoks, T. J. Stewart, & J. Wallenius (Eds.), Multiple criteria decision making for sustainable energy and transportation systems (pp. 339–354). Berlin/Heidelberg: Springer. · Zbl 1184.90151
[8] Deb, K., Miettinen, K., & Chaudhuri, S. (2010). Towards an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Transactions on Evolutionary Computation, 14(6), 821–841. · doi:10.1109/TEVC.2010.2041667
[9] Eschenauer, H. A., Osyczka, A., & Schäfer, E. (1990). Interactive multicriteria optimization in design process. In H. Eschenauer, J. Koski, & A. Osyczka (Eds.), Multicriteria design optimization procedures and applications (pp. 71–114). Berlin: Springer.
[10] Fletcher, R. (2000). Practical methods of optimization (2nd ed.). New York: Wiley. · Zbl 0905.65002
[11] Fonseca, C. M., & Fleming, P. J. (1995). An overview of evolutionary algorithms in multi-objective optimization. Evolutionary Computation, 3(1), 1–16. · doi:10.1162/evco.1995.3.1.1
[12] Gardiner, L. R., & Steuer, R. E. (1994a). Unified interactive multiple objective programming. European Journal of Operational Research, 74(3), 391–406. · Zbl 0809.90088 · doi:10.1016/0377-2217(94)90219-4
[13] Gardiner, L. R., & Steuer, R. E. (1994b). Unified interactive multiple objective programming: an open architecture for accommodating new procedures. Journal of the Operational Research Society, 45(12), 1456–1466. · Zbl 0813.90069
[14] Gass, S., & Saaty, T. (1955). The computational algorithm for the parametric objective function. Naval Research Logistics Quaterly, 2(1–2), 39–45. · doi:10.1002/nav.3800020106
[15] Gill, P. E., Murray, W. W., & Wright, M. H. (1981). Practical optimization. London/New York: Academic Press. · Zbl 0503.90062
[16] Goldfarb, D., & Idnani, A. (1983). A numerically stable dual method for solving strictly convex quadratic problems. Mathematical Programming, 27, 1–33. · Zbl 0537.90081 · doi:10.1007/BF02591962
[17] Grauer, M., Lewandowski, A., & Wierzbicki, A. P. (1984). DIDASS–theory, implementation and experiences. In M. Grauer & A. P. Wierzbicki (Eds.), Interactive decision analysis (pp. 22–30). Berlin: Springer. · Zbl 0547.90053
[18] Hakanen, J., Kawajiri, Y., Miettinen, K., & Biegler, L. T. (2007). Interactive multi-objective optimization for simulated moving bed processes. Control and Cybernetics, 36(2), 283–302. · Zbl 1138.90005
[19] Heikkola, E., Miettinen, K., & Nieminen, P. (2006). Multiobjective optimization of an ultrasonic transducer using NIMBUS. Ultrasonics, 44(4), 368–380. · doi:10.1016/j.ultras.2006.04.004
[20] Hwang, C. L., & Masud, A. S. M. (1979). Multiple objective decision making–methods and applications: a state-of-the-art survey. Berlin: Springer. · Zbl 0397.90001
[21] Kaliszewski, I. (2004). Out of the mist–towards decision-maker-friendly multiple criteria decision making support. European Journal of Operational Research, 158(2), 293–307. · Zbl 1065.90520 · doi:10.1016/j.ejor.2003.06.005
[22] Korhonen, P., & Laakso, J. (1986). A visual interactive method for solving the multiple criteria problem. European Journal of Operational Research, 24(2), 277–287. · Zbl 0581.90088 · doi:10.1016/0377-2217(86)90050-0
[23] Korhonen, P., &amp; Wallenius, J. (1988). A Pareto race. Naval Research Logistics, 35(6), 615–623. · Zbl 0661.90085 · doi:10.1002/1520-6750(198812)35:6<615::AID-NAV3220350608>3.0.CO;2-K
[24] Laukkanen, T., Tveit, T.-M., Ojalehto, V., Miettinen, K., &amp; Fogelholm, C.-J. (2010). An interactive multi-objective approach to heat exchanger network synthesis. Computers and Chemical Engineering, 34(6), 943–952. · doi:10.1016/j.compchemeng.2010.01.002
[25] Lewandowski, A., Kreglewski, T., Rogowski, T., &amp; Wierzbicki, A. P. (1989). Didass–theory, implementation and experiences. In A. Lewandowski &amp; A. P. Wierzbicki (Eds.), Aspiration based decision support systems: theory, software and applications (pp. 21–47). Berlin: Springer. · Zbl 0825.90605
[26] Luque, M., Yang, J. B., &amp; Wong, B. Y. H. (2009). PROJECT method for multiobjective optimization based on the gradient projection and reference point. IEEE Transactions on Systems, Man and Cybernetics–Part A: Systems and Humans, 39(4), 864–879. · doi:10.1109/TSMCA.2009.2019855
[27] Luque, M., Ruiz, F., &amp; Steuer, R. E. (2010). Modified interactive Chebyshev algorithm (MICA) for convex multiobjective programming. European Journal of Operational Research, 204(3), 557–564. · Zbl 1181.90238 · doi:10.1016/j.ejor.2009.11.011
[28] Luque, M., Ruiz, F., &amp; Miettinen, K. (2011). Global formulation for interactive multiobjective optimization. OR Spectrum, 33(1), 27–48. · Zbl 1231.90238 · doi:10.1007/s00291-008-0154-3
[29] Miettinen, K. (1999). Nonlinear multiobjective optimization. Boston: Kluwer Academic. · Zbl 0949.90082
[30] Miettinen, K., &amp; Hakanen, J. (2009). Why use interactive multi-objective optimization in chemical process design? In G. P. Rangaiah (Ed.), Multi-objective optimization: techniques and applications in chemical engineering (pp. 153–188). World Scientific: Singapore.
[31] Miettinen, K., &amp; Mäkelä, M. M. (1995). Interactive bundle-based method for nondifferentiable multiobjective optimization: NIMBUS. Optimization, 34(3), 231–246. · Zbl 0855.90114 · doi:10.1080/02331939508844109
[32] Miettinen, K., &amp; Mäkelä, M. M. (2006). Synchronous approach in interactive multiobjective optimization. European Journal of Operational Research, 170(7–8), 909–922. · Zbl 1091.90071 · doi:10.1016/j.ejor.2004.07.052
[33] Miettinen, K., Mäkelä, M. M., &amp; Kaario, K. (2006). Experiments with classification-based scalarizing functions in interactive multiobjective optimization. European Journal of Operational Research, 175(2), 931–947. · Zbl 1142.90482 · doi:10.1016/j.ejor.2005.06.019
[34] Miettinen, K., Ruiz, F., &amp; Wierzbicki, A. (2008). Introduction to multiobjective optimization: interactive approaches. In J. Branke, K. Deb, K. Miettinen, &amp; R. Słowiński (Eds.), Multiobjective optimization: interactive and evolutionary approaches (pp. 27–57). Berlin/Heidelberg: Springer.
[35] NAG (2000). Numerical algorithm group limited: NAG C library manual. Mark 6. Oxford: NAG.
[36] Nakayama, H., &amp; Sawaragi, Y. (1984). Satisficing trade-off method for multiobjective programming. In M. Grauer &amp; A. P. Wierzbicki (Eds.), Interactive decision analysis (pp. 113–122). Berlin: Springer. · Zbl 0545.90059
[37] Ogryczak, W., &amp; Lahoda, S. (2006). Aspiration/reservation-based decision support–a step beyond goal programming. Journal of Multi-Criteria Decision Analysis, 1(2), 101–117. · Zbl 0847.90089 · doi:10.1002/mcda.4020010206
[38] Pinter, J. D. (2001). Computational global optimization in nonlinear systems: an interactive tutorial. Atlanta: Lionheart.
[39] Pinter, J. D. (2006). Nonlinear optimization with MPL/LGO: introduction and user’s guide. Technical report, Maximal Software and PCS.
[40] Romero, C. (1993). Extended lexicographic goal programming: a unified approach. Omega, 29(1), 63–71. · doi:10.1016/S0305-0483(00)00026-8
[41] Ruotsalainen, H., Boman, E., Miettinen, K., &amp; Tervo, J. (2009). Nonlinear interactive multiobjective optimization method for radiotherapy treatment planning with Boltzmann transport equation. Contemporary Engineering. Sciences, 2(9), 391–422.
[42] Sakawa, M. (1982). Interactive multiobjective decision making by the sequential proxy optimization technique: SPOT. European Journal of Operational Research, 9(4), 386–396. · Zbl 0477.90074 · doi:10.1016/0377-2217(82)90183-7
[43] Sawaragi, Y., Nakayama, H., &amp; Tanino, T. (1985). Theory of multiobjective optimization. Orlando: Academic Press. · Zbl 0566.90053
[44] Steuer, R. E. (1986). Multiple criteria optimization: theory, computation and application. New York: Wiley. · Zbl 0663.90085
[45] Steuer, R. E., &amp; Choo, E. U. (1983). An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26(1), 326–344. · Zbl 0506.90075 · doi:10.1007/BF02591870
[46] Vassilev, V., &amp; Narula, S. C. (1993). A reference direction algorithm for solving multiple objective integer linear programming problems. Journal of the Operational Research Society, 44(12), 1201–1209. · Zbl 0799.90104
[47] Vassilev, V., Narula, S. C., &amp; Gouljashki, V. G. (2001). An interactive reference direction algorithm for solving multi-objective convex nonlinear integer programming problems. International Transactions in Operational Research, 8(4), 367–380. · Zbl 0992.90063 · doi:10.1111/1475-3995.00271
[48] Wierzbicki, A. P. (1980). The use of reference objectives in multiobjective optimization. In G. Fandel &amp; T. Gal (Eds.), Multiple criteria decision making, theory and applications (pp. 468–486). Berlin: Springer. · Zbl 0435.90098
[49] Wierzbicki, A. P., Makowski, M., &amp; Wessels, J. (Eds.) (2000). Model-based decision support methodology with environmental applications. Dordrecht: Kluwer Academic. · Zbl 0992.91003
[50] Yang, J. B. (1999). Gradient projection and local region search for multiobjective optimization. European Journal of Operational Research, 112(2), 432–459. · Zbl 0937.90099 · doi:10.1016/S0377-2217(97)00451-7
[51] Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, 8(1), 59–60. · doi:10.1109/TAC.1963.1105511
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.