×

Fixed point results for a generalized nonexpansive map in uniformly convex metric spaces. (English) Zbl 1251.54044

Let \((X,d)\) be a metric space. A map \(W:X^2\times [0,1]\rightarrow X\) is called a convex structure on \(X\) if \[ d(u,W(x,y,\lambda))\leq \lambda d(u,x)+(1-\lambda) d(u,y), \,\forall x,y,u\in X,\,\forall \lambda \in [0,1]. \] A metric space \((X,d)\) together with a convex structure \(W\) on \(X\) is called a convex metric space and is denoted by \((X,d,W)\). A convex metric space \((X,d,W)\) is said to satisfy condition \((W_1)\) if for all \(x,y,z \in X\) and \(t\in (0,1)\), \[ d(W(x,y,t),W(z,y,t))\leq t d(x,z). \] A nonempty subset of a convex metric space \((X,d,W)\) is said to be convex if for all \(x,y\in C\) and \(\lambda \in [0,1]\), \[ W(x,y,\lambda)\in C. \] The main result of the paper is stated as follows.
Theorem 2.4. Let \(C\) be a nonempty, closed, convex and bounded subset of a complete and uniformly convex metric space \((X,d,W)\) satisfying \((W_1)\). If \(T:C\rightarrow C\) is a continuous map satisfying \[ d(Tx,Ty)\leq a_1d(x,y)+a_2 d(Tx,x)+a_3 d(Ty,y)+a_4 d(Tx,y)+a_5 d(Ty,x), \] for all \(x,y \in C\), where \(a_i\geq 0\) and \(\sum_{i=1}^{5}a_i\leq 1\), then \(T\) has a fixed point in \(C\).
A convergence result (Theorem 3.1) for a Krasnoselskii type iteration used to approximate fixed points of a generalized nonexpansive mapping, is also given.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
49M05 Numerical methods based on necessary conditions
Full Text: DOI

References:

[1] Beg, I.; Abbas, M., Fixed point and best approximation in Menger convex metric spaces, Arch. Math., 41, 389-397 (2005) · Zbl 1109.47047
[2] Browder, F. E., Nonexpansive nonlinear operators in Banach spaces, Proc. Natl. Acad. Sci. USA., 54, 1041-1044 (1965) · Zbl 0128.35801
[3] Fukhar-ud-din, H.; Khan, A. R., Approximating common fixed points of asymptotically nonexpansive maps in uniformly convex Banach spaces, Comput. Math. Appl., 53, 1349-1360 (2007) · Zbl 1134.47049
[4] Khan, A. R.; Fukhar-ud-din, H.; Domlo, A. A., Approximating fixed points of some maps in uniformly convex metric spaces, Fixed Point Theory Appl., 2010, 11 (2010), Article ID 385986 · Zbl 1189.54032
[5] Kirk, W. A., A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72, 1004-1006 (1965) · Zbl 0141.32402
[6] Reich, S.; Shafrir, I., Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal., 15, 537-558 (1990) · Zbl 0728.47043
[7] Takahashi, W., A convexity in metric spaces and non-expansive mappings, Kodai Math. Sem. Rep., 22, 142-149 (1970) · Zbl 0268.54048
[8] Zhang, Q.; Song, Y., Iterative construction for common fixed points of finitely many nonexpansive mappings, Nonlinear Anal., 71, 1850-1856 (2009) · Zbl 1219.47137
[9] Gohde, D., Zum Prinzip der Kontraktiven Abbildung, Math. Nachr., 30, 251-258 (1965) · Zbl 0127.08005
[10] Blumenthal, L. M., Distance Geometry (1953), Clarendon Press: Clarendon Press Oxford · Zbl 0063.00475
[11] Prus, B.; Smarzewski, R. S., Strongly unique best approximation and centers in uniformly convex spaces, J. Math. Anal. Appl., 121, 85-92 (1978)
[12] Veeramani, P., On some fixed point theorems on uniformly convex Banach spaces, J. Math. Anal. Appl., 167, 160-166 (1992) · Zbl 0780.47047
[13] Shimizu, T.; Takahashi, W., Fixed points of multivalued mappings in certain convex metric spaces, Topol, Methods Nonlinear Anal., 8, 197-203 (1996) · Zbl 0902.47049
[14] Khamsi, M. A.; Khan, A. R., Inequalities in metric spaces with applications, Nonlinear Anal., 74, 4036-4045 (2011) · Zbl 1246.46012
[15] Kannan, R., Some results on fixed points II, Amer. Math. Monthly, 76, 405-408 (1969) · Zbl 0179.28203
[16] Ciric, L. B., A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., 45, 267-273 (1974) · Zbl 0291.54056
[17] N. Hussain, H. Fukhar-ud-din, Z. Akhtar, A multi-step implicit iterative process for common fixed points of generalized \(C^q\); N. Hussain, H. Fukhar-ud-din, Z. Akhtar, A multi-step implicit iterative process for common fixed points of generalized \(C^q\)
[18] Naimpally, S. A.; Sing, K. L., Extensions of fixed point theorems of Rhoades, J. Math. Anal. Appl., 96, 437-446 (1983) · Zbl 0524.47033
[19] Khan, A. R.; Ahmed, M. A., Convergence of a general iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces and applications, Comput. Math. Appl., 59, 2990-2995 (2010) · Zbl 1194.47085
[20] Reich, S., Kannan’s fixed point theorem, Bolletino U.M.I., 4, 1-11 (1971) · Zbl 0219.54042
[21] Zamfirescu, T., Fixed point theorems in metric spaces, Arch. Math., 23, 292-298 (1972) · Zbl 0239.54030
[22] Hardy, G. E.; Rogers, T. D., A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16, 201-206 (1973) · Zbl 0266.54015
[23] Goebel, K.; Kirk, W. A.; Shimi, T. N., A fixed point theorem in uniformly convex spaces, Boll. U. M. I., 7, 4, 67-75 (1973) · Zbl 0265.47045
[24] Shimi, T. N., Approximation of fixed points of certain nonlinear mappings, J. Math. Anal. Appl., 65, 565-571 (1978) · Zbl 0407.47037
[25] Kannan, R., Some results on fixed points III, Fund. Math., 70, 169-177 (1971) · Zbl 0246.47065
[26] Reich, S., Fixed points of contractive functions, Bolletino U.M.I., 5, 26-42 (1972) · Zbl 0249.54026
[27] Suzuki, T., Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340, 1088-1095 (2008) · Zbl 1140.47041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.