×

Surfaces of rotation with constant extrinsic curvature in a conformally flat 3-space. (English) Zbl 1251.53037

Summary: We relate the extrinsic curvature of surfaces with respect to the Euclidean metric and any metrics that are conformal to the Euclidean metric. We introduce the space \({\mathbb{E}_3}\) – the 3-dimensional real vector space equipped with a conformally flat metric that is a solution of the Einstein equation. We characterize the surfaces of rotation with constant extrinsic curvature in the space \({\mathbb{E}_3}\). We obtain a one-parameter family of two-sheeted hyperboloids that are complete surfaces with zero extrinsic curvature in \({\mathbb{E}_3}\). Moreover, we obtain a one-parameter family of cones and show that there exists another one-parameter family of complete surfaces of rotation with zero extrinsic curvature in \({\mathbb{E}_3}\). Moreover, we show that there exist complete surfaces with constant negative extrinsic curvature in \({\mathbb{E}_3}\). As an application we prove that there exist complete surfaces with Gaussian curvature \(K \leq - \varepsilon < 0\), in contrast with Efimov’s theorem for the Euclidean space, and Schlenker’s theorem for the hyperbolic space.

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
Full Text: DOI

References:

[1] Alencar, H., do Carmo, M.P., Tribuzy, R.: A theorem of H. Hopf and the Cauchy-Riemann in equality. (Available at http://www.pos.mat.ufal.br/AlencarCarmoTrib.pdf ) · Zbl 1134.53031
[2] Aledo J.A., Espinar J.M., Gálvez J.A.: Complete surfaces of constant curvature in $${\(\backslash\)mathbb{H}\^2\(\backslash\)times \(\backslash\)mathbb{R}}$$ and $${\(\backslash\)mathbb{S}\^2\(\backslash\)times\(\backslash\)mathbb{R}}$$ . Calc. Var. 29, 347–363 (2007) · Zbl 1119.53039 · doi:10.1007/s00526-006-0067-4
[3] Beneki C., Kaimakamis G., Papantoniou B.J.: A classification of surfaces of revolution with constant Gauss curvature in a 3-dimensional Minkowski space. Bull. Calcutta Math. Soc. 90(6), 441–458 (1998) · Zbl 0960.53013
[4] Corro A.V.: Generalized Weingarten surfaces of Bryant type in hyperbolic 3-space. Mat. Contemp. 30, 71–89 (2006) · Zbl 1151.53343
[5] Corro A.V., Martinez A., Milán F.: Complete flat surfaces with two isolated singularities in hyperbolic 3-space. J. Math. Anal. Appl. 366, 582–592 (2010) · Zbl 1190.53055 · doi:10.1016/j.jmaa.2009.12.020
[6] Caddeo R., Piu P., Ratto A.: Rotational surfaces in H 3 with constant Gauss curvature. Boll. Un. Mat. Ital. B (7) 10(2), 341–357 (1996) · Zbl 0849.53004
[7] Espinar J.M., Gálvez J.A., Rosenberg H.: Complete surfaces with positive extrinsic curvature in product spaces. Comm. Math. Helv. 84(2), 351–386 (2009) · Zbl 1166.53040 · doi:10.4171/CMH/165
[8] Efimov N.V.: Surfaces with a slowly changing negative curvature. Russian Math. Surv. 5(131), 1–56 (1966) · Zbl 0171.19903 · doi:10.1070/RM1966v021n05ABEH004173
[9] Fernández I., Mira P.: Harmonic maps and constant mean curvature surfaces in $${\(\backslash\)mathbb{H}\^2\(\backslash\)times \(\backslash\)mathbb{R}}$$ . Am. J. Math. 129(4), 1145–1181 (2007) · Zbl 1182.53058 · doi:10.1353/ajm.2007.0023
[10] Montaldo S., Onnis I.I.: Invariant surfaces of a three-dimensional manifold with constant Gauss curvature. J. Geom. Phys. 55, 440–449 (2005) · Zbl 1084.53055 · doi:10.1016/j.geomphys.2005.01.002
[11] Pina R., Tenenblat K.: On solutions of the Ricci curvature equation and the Einstein equation. Israel J. Math. 171(1), 61–76 (2009) · Zbl 1179.53023 · doi:10.1007/s11856-009-0040-y
[12] Schlenker J.-M.: Surfaces à courbure extrinsèque négative dans l’espace hyperbolique. Ann. Scient. Éc. Norm. Sup. 4 e série 34, 79–130 (2001) · Zbl 1029.53068
[13] Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E.: Exact solutions of Einstein field equations. Cambridge University Press, Cambridge (2003) · Zbl 1057.83004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.