×

The improved Riccati equation method and exact solutions to mZK equation. (English) Zbl 1251.34005

Summary: We use the improved Riccati equation method to construct more general exact solutions to nonlinear equations. We obtain the travelling wave solutions involving parameters, which are expressed by the hyperbolic functions, the trigonometric functions, and the rational functions. When the parameters are taken as special values, the method provides not only solitary wave solutions but also periodic waves solutions. The method appears to be easier and more convenient by means of a symbolic computation system. Of course, it is also effective to solve other nonlinear evolution equations in mathematical physics.

MSC:

34A05 Explicit solutions, first integrals of ordinary differential equations
34A45 Theoretical approximation of solutions to ordinary differential equations
35C07 Traveling wave solutions

References:

[1] B. Tian and Y. T. Gao, “Spherical nebulons and Backlund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation,” The European Physical Journal D, vol. 33, pp. 59-65, 2005.
[2] L. Tian and J. Yin, “Stability of multi-compacton solutions and Bäcklund transformation in K(m,n,1),” Chaos, Solitons and Fractals, vol. 23, no. 1, pp. 159-169, 2005. · Zbl 1075.37028 · doi:10.1016/j.chaos.2004.04.004
[3] J.-H. He and X.-H. Wu, “Exp-function method for nonlinear wave equations,” Chaos, Solitons and Fractals, vol. 30, no. 3, pp. 700-708, 2006. · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[4] J.-H. He and L.-N. Zhang, “Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the Exp-function method,” Physics Letters A, vol. 372, no. 7, pp. 1044-1047, 2008. · Zbl 1217.35152 · doi:10.1016/j.physleta.2007.08.059
[5] L. WangM, Y. B. Zhou, and Z. B. Li, “Application of homogeneous balance method to exact solutions of nonlinear equations in mathematical physics,” Physics Letters A, vol. 216, pp. 67-75, 1996. · Zbl 1125.35401 · doi:10.1016/0375-9601(96)00283-6
[6] M. H. M. Moussa and R. M. El Shikh, “Two applications of the homogeneous balance method for solving the generalized Hirota-Satsuma coupled KdV system with variable coefficients,” International Journal of Nonlinear Science, vol. 7, no. 1, pp. 29-38, 2009. · Zbl 1170.35519
[7] A. A. Soliman, “The modified extended tanh-function method for solving Burgers-type equations,” Physica A, vol. 361, no. 2, pp. 394-404, 2006. · doi:10.1016/j.physa.2005.07.008
[8] M. A. Abdou and A. A. Soliman, “Modified extended tanh-function method and its application on nonlinear physical equations,” Physics Letters A, vol. 353, pp. 487-492, 2006.
[9] S. K. Liu, Z. T. Fu, S. D. Liu, and Q. Zhao, “Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations,” Physics Letters A, vol. 289, no. 1-2, pp. 69-74, 2001. · Zbl 0972.35062 · doi:10.1016/S0375-9601(01)00580-1
[10] Z. T. Fu, S. K. Liu, S. D. Liu, and Q. Zhao, “New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations,” Physics Letters A, vol. 290, no. 1-2, pp. 72-76, 2001. · Zbl 0977.35094 · doi:10.1016/S0375-9601(01)00644-2
[11] M. Wang, X. Li, and J. Zhang, “The (G\(^{\prime}\)/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics,” Physics Letters A, vol. 372, no. 4, pp. 417-423, 2008. · Zbl 1217.76023 · doi:10.1016/j.physleta.2007.07.051
[12] A. Bekir, “Application of the (G\(^{\prime}\)/G)-expansion method for nonlinear evolution equations,” Physics Letters A, vol. 372, no. 19, pp. 3400-3406, 2008. · Zbl 1228.35195 · doi:10.1016/j.physleta.2008.01.057
[13] S. Munro and E. J. Parkes, “The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions,” Journal of Plasma Physics, vol. 62, no. 3, pp. 305-317, 1999.
[14] S. Munro and E. J. Parkes, “Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation,” Journal of Plasma Physics, vol. 64, no. 4, pp. 411-426, 2000.
[15] A. de Bouard, “Stability and instability of some nonlinear dispersive solitary waves in higher dimension,” Proceedings of the Royal Society of Edinburgh Section A, vol. 126, no. 1, pp. 89-112, 1996. · Zbl 0861.35094 · doi:10.1017/S0308210500030614
[16] F. Linares and A. Pastor, “Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation,” Journal of Functional Analysis, vol. 260, no. 4, pp. 1060-1085, 2011. · Zbl 1216.35119 · doi:10.1016/j.jfa.2010.11.005
[17] F. Ribaud and S. Vento, “A note on the Cauchy problem for the 2D generalized Zakharov-Kuznetsov equations,” Comptes Rendus Mathématique, vol. 350, no. 9-10, pp. 499-503, 2012. · Zbl 1248.35189 · doi:10.1016/j.crma.2012.05.007
[18] F. Linares and A. Pastor, “Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation,” SIAM Journal on Mathematical Analysis, vol. 41, no. 4, pp. 1323-1339, 2009. · Zbl 1197.35242 · doi:10.1137/080739173
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.